1
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
2
|
Study of the Relationship between Sigma Receptor Expression Levels and Some Common Sigma Ligand Activity in Cancer Using Human Cancer Cell Lines of the NCI-60 Cell Line Panel. Biomedicines 2021; 9:biomedicines9010038. [PMID: 33466391 PMCID: PMC7824900 DOI: 10.3390/biomedicines9010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/27/2023] Open
Abstract
Sigma (σ) receptors have attracted great interest since they are implicated in various cellular functions and biological processes and diseases, including various types of cancer. The receptor family consists of two subtypes: sigma-1 (σ1) and sigma-2 (σ2). Both σ receptor subtypes have been proposed as therapeutic targets for various types of cancers, and many studies have provided evidence that their selective ligands (agonists and antagonists) exhibit antiproliferative and cytotoxic activity. Still, the precise mechanism of action of both σ receptors and their ligands remains unclear and needs to be elucidated. In this study, we aimed to simultaneously determine the expression levels of both σ receptor subtypes in several human cancer cell lines. Additionally, we investigated the in vitro antiproliferative activity of some widely used σ1 and σ2 ligands against those cell lines to study the relationship between σ receptor expression levels and σ ligand activity. Finally, we ran the NCI60 COMPARE algorithm to further elucidate the cytotoxic mechanism of action of the selected σ ligands studied herein.
Collapse
|
3
|
Listro R, Stotani S, Rossino G, Rui M, Malacrida A, Cavaletti G, Cortesi M, Arienti C, Tesei A, Rossi D, Giacomo MD, Miloso M, Collina S. Exploring the RC-106 Chemical Space: Design and Synthesis of Novel ( E)-1-(3-Arylbut-2-en-1-yl)-4-(Substituted) Piperazine Derivatives as Potential Anticancer Agents. Front Chem 2020; 8:495. [PMID: 32695745 PMCID: PMC7338850 DOI: 10.3389/fchem.2020.00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Despite the fact that significant advances in treatment of common cancers have been achieved over the years, orphan tumors still represent an important unmet medical need. Due to their complex multifactorial origin and limited number of cases, such pathologies often have very limited treatment options and poor prognosis. In the search for new anticancer agents, our group recently identified RC-106, a Sigma receptor modulator endowed with proteasome inhibition activity. This compound showed antiproliferative activity toward different cancer cell lines, among them glioblastoma (GB) and multiple myeloma (MM), two currently unmet medical conditions. In this work, we directed our efforts toward the exploration of chemical space around RC-106 to identify new active compounds potentially useful in cancer treatment. Thanks to a combinatorial approach, we prepared 41 derivatives of the compound and evaluated their cytotoxic potential against MM and GB. Three novel potential anticancer agents have been identified.
Collapse
Affiliation(s)
- Roberta Listro
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Silvia Stotani
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
- Medicinal Chemistry, Taros Chemicals GmbH and Co. KG, Dortmund, Germany
| | - Giacomo Rossino
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Alessio Malacrida
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Di Giacomo
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mariarosaria Miloso
- Experimental Neurology Unit, School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Monza, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Alamri MA, Alamri MA. Pharmacophore and docking-based sequential virtual screening for the identification of novel Sigma 1 receptor ligands. Bioinformation 2019; 15:586-595. [PMID: 31719769 PMCID: PMC6822515 DOI: 10.6026/97320630015586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/23/2022] Open
Abstract
Sigma 1 receptor (σ1), a small transmembrane protein expressed in most human cells participates in modulating the function of other membrane proteins such as G protein coupled receptors and ion channels. Several ligands targeting this receptor are currently in clinical trials for the treatment of Alzheimer's disease, ischemic stroke and neuro-pathic pain. Hence, this receptor has emerged as an attractive target for the treatment of neuro-pathological diseases with unmet medical needs. It is of interest to identify and characterise novelσ1 receptor ligands with different chemical scaffolds using computer-aided drug designing approach. In this work, a GPCR-focused chemical library consisting of 8543 compounds was screened by pharmacophore and docking-based virtual screening methods using LigandScout 4.3 and Autodock Vina 1.1.2 in PyRx 0.8, respectively. The pharmacophore model was constructed based on the interactions of a selective agonist and another antagonist ligand with high binding affinity to the human σ1receptors. Candidate compounds were filtered sequentially by pharmacophore-fit scores, docking energy scores, drug-likeness filters and ADMET properties. The binding mode and pharmacophore mapping of candidate compounds were analysed by Autodock Vina 1.1.2 and LigandScout 4.3 programs, respectively. A pharmacophore model composed of three hydrophobic and positive ionizable features with recognized geometry was built and used as a 3D query for screening a GPCR-focused chemical library by LigandScout 4.3 program. Among the screened 8543 compounds, 159 candidate compounds were obtained from pharmacophore-based screening. 45 compounds among them bound to σ 1receptor with high binding-affinity scores in comparison to the co-crystallized ligand. Amongst these, top five candidate compounds with excellent druglikeness and ADMET properties were selected. These five candidate compounds may act as potential σ1 receptor ligands.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammed A Alamri
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Kronenberg E, Weber F, Brune S, Schepmann D, Almansa C, Friedland K, Laurini E, Pricl S, Wünsch B. Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety. J Med Chem 2019; 62:4204-4217. [PMID: 30939014 DOI: 10.1021/acs.jmedchem.9b00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In a Ca2+ influx assay, cis-11b behaved as a σ1 antagonist. cis-11b reveals high selectivity over σ2 and opioid receptors. The interactions of the novel σ1 ligands were analyzed on the molecular level using the recently reported X-ray crystal structure of the σ1 receptor protein. The protonated amino moiety forms a persistent salt bridge with E172. The spiro[benzopyran-1,1'-cyclohexane] scaffold and the cyclohexylmethyl moiety occupy two hydrophobic pockets. Exchange of the N-cyclohexylmethyl moiety by a benzyl group led unexpectedly to potent and selective μ-opioid receptor ligands.
Collapse
Affiliation(s)
- Elisabeth Kronenberg
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Frauke Weber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Stefanie Brune
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Carmen Almansa
- Esteve Pharmaceuticals S.A. , Baldiri Reixach 4-8 , 08028 Barcelona , Spain
| | - Kristina Friedland
- Pharmakologie und Toxikologie, Institut für Pharmazie und Biochemie , Universität Mainz , Staudinger Weg 5 , D-55128 Mainz , Germany
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-motion Cluster of Excellence (EXC 1003-CiM) , University of Münster , D-48149 Münster , Germany
| |
Collapse
|
6
|
Kranz M, Bergmann R, Kniess T, Belter B, Neuber C, Cai Z, Deng G, Fischer S, Zhou J, Huang Y, Brust P, Deuther-Conrad W, Pietzsch J. Bridging from Brain to Tumor Imaging: (S)-(-)- and (R)-(+)-[ 18F]Fluspidine for Investigation of Sigma-1 Receptors in Tumor-Bearing Mice. Molecules 2018; 23:E702. [PMID: 29558382 PMCID: PMC6017399 DOI: 10.3390/molecules23030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S)-(-)- and (R)-(+)-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously) implanted tumors. Therefore, a brain tumor model (U87-MG) with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mathias Kranz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Ralf Bergmann
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Birgit Belter
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Zhengxin Cai
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Gang Deng
- Department of Neurosurgery and Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Jiangbing Zhou
- Department of Neurosurgery and Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Yiyun Huang
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01062 Dresden, Germany.
| |
Collapse
|
7
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
8
|
Weber F, Brune S, Börgel F, Lange C, Korpis K, Bednarski PJ, Laurini E, Fermeglia M, Pricl S, Schepmann D, Wünsch B. Rigidity versus Flexibility: Is This an Issue in σ1 Receptor Ligand Affinity and Activity? J Med Chem 2016; 59:5505-19. [PMID: 27156565 DOI: 10.1021/acs.jmedchem.6b00585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stereoisomeric 2,5-diazabicyclo[2.2.2]octanes 14 and 15 were prepared in a chiral-pool synthesis starting from (S)- or (R)-aspartate. The key step in the synthesis was a Dieckmann-analogous cyclization of (dioxopiperazinyl)acetates 8, which involved trapping of the intermediate hemiketal anion with Me3SiCl. The σ1 affinity was tested using membrane preparations from animal (guinea pig) and human origin. The binding of bicyclic compounds was analyzed by molecular dynamics simulations based on a 3D homology model of the σ1 receptor. The good correlation between Ki values observed in the σ1 assays and calculated free binding energy, coupled with the identification of four crucial ligand/receptor interactions, allowed the formulation of structure-affinity relationships. In an in vitro antitumor assay with seven human tumor cell lines, the bicyclic compounds inhibited selectively the growth of the cell line A427, which is due to induction of apoptosis. In this assay, the compounds behave like the known σ1 receptor antagonist haloperidol.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Frederik Börgel
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Carsten Lange
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Katharina Korpis
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy.,National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste , Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Gromek KA, Suchy FP, Meddaugh HR, Wrobel RL, LaPointe LM, Chu UB, Primm JG, Ruoho AE, Senes A, Fox BG. The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem 2014; 289:20333-44. [PMID: 24847081 PMCID: PMC4106346 DOI: 10.1074/jbc.m113.537993] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/29/2014] [Indexed: 12/05/2022] Open
Abstract
Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[(3)H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Uyen B Chu
- Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Arnold E Ruoho
- Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Brian G Fox
- From the Transmembrane Protein Center, Departments of Biochemistry and
| |
Collapse
|
11
|
Weber F, Brune S, Korpis K, Bednarski PJ, Laurini E, Dal Col V, Pricl S, Schepmann D, Wünsch B. Synthesis, Pharmacological Evaluation, and σ1 Receptor Interaction Analysis of Hydroxyethyl Substituted Piperazines. J Med Chem 2014; 57:2884-94. [DOI: 10.1021/jm401707t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Frauke Weber
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Katharina Korpis
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J. Bednarski
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Valentina Dal Col
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
- National
Interuniversity Consortium for Material Science and Technology (INSTM),
Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
12
|
Korpis K, Weber F, Brune S, Wünsch B, Bednarski PJ. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands. Bioorg Med Chem 2014; 22:221-33. [DOI: 10.1016/j.bmc.2013.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/08/2013] [Accepted: 11/16/2013] [Indexed: 10/26/2022]
|
13
|
A 96-well filtration method for radioligand binding analysis of σ receptor ligands. J Pharm Biomed Anal 2012; 71:157-61. [PMID: 22910107 DOI: 10.1016/j.jpba.2012.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 11/24/2022]
Abstract
σ receptors represent a potential drug target for numerous therapeutic indications including cancer, depression, psychostimulant abuse, and stroke. Most published radioligand binding studies for σ receptors utilize a low throughput method employing a "cell harvester." Higher throughput methods are required to facilitate efficient screening of large numbers of novel compounds. In this study, a series of reference compounds was analyzed with a new medium-throughput 96-well filtration method and the results were compared to those obtained using the conventional cell harvester-based method. The 96-well assay utilized rat liver membranes for the determination of both known σ receptor subtypes (σ(1) and σ(2)) because this tissue contains high densities of both subtypes and fulfills criteria required for reliable use with the 96-well format. The new method gave comparable K(i) values for reference ligands analyzed in parallel with samples prepared in rat brain membranes and processed on the traditional cell harvester. For σ(1) receptors, equivalent affinity values were observed for both methods/tissues. For σ(2) receptors, approximately 2-fold higher affinities were observed for most compounds in liver, as compared to brain membranes, but excellent correlation with brain-derived values was maintained. To further demonstrate the utility of the new method it was used to screen a novel series of 2(3H)-benzothiazolone compounds, resulting in the identification of several analogues with nanomolar affinity and greater than 50-fold specificity for σ(1) versus σ(2) receptors.
Collapse
|