1
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/ β-Catenin and Epithelial-Mesenchymal Transition Pathways. JOURNAL OF ONCOLOGY 2023; 2023:5093941. [PMID: 36866240 PMCID: PMC9974310 DOI: 10.1155/2023/5093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Zhiqin Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 2Departments of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yue Jia
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Shaojia Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongjun Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wen Fan
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 3Departments of Reproduction, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Xin Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Liang He
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiaoyu Shen
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiangqun Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yi Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongying Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
2
|
Lei H, Zhang SQ, Fan S, Bai HR, Zhao HY, Mao S, Xin M. Recent Progress of Small Molecule Menin-MLL Interaction Inhibitors as Therapeutic Agents for Acute Leukemia. J Med Chem 2021; 64:15519-15533. [PMID: 34726905 DOI: 10.1021/acs.jmedchem.1c00872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mixed lineage leukemia (MLL) gene rearrangements are associated with acute leukemia. The protein menin is regarded as a critical oncogenic cofactor of the resulting MLL fusion proteins in acute leukemia. A direct interaction between menin and the MLL amino terminal sequences is necessary for MLL fusion protein-mediated leukemogenesis. Thus, inhibition of the interaction between menin and MLL has emerged as a novel therapeutic strategy. Recent improvements in structural biology and chemical reactivity have promoted the design and development of selective and potent menin-MLL interaction inhibitors. In this Perspective, different classes of menin-MLL interaction inhibitors are comprehensively summarized. Further research potential, challenges, and opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Huan-Rong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
3
|
Tian J, Teuscher KB, Aho ER, Alvarado JR, Mills JJ, Meyers KM, Gogliotti RD, Han C, Macdonald JD, Sai J, Shaw JG, Sensintaffar JL, Zhao B, Rietz TA, Thomas LR, Payne WG, Moore WJ, Stott GM, Kondo J, Inoue M, Coffey RJ, Tansey WP, Stauffer SR, Lee T, Fesik SW. Discovery and Structure-Based Optimization of Potent and Selective WD Repeat Domain 5 (WDR5) Inhibitors Containing a Dihydroisoquinolinone Bicyclic Core. J Med Chem 2020; 63:656-675. [PMID: 31858797 PMCID: PMC6986559 DOI: 10.1021/acs.jmedchem.9b01608] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.
Collapse
Affiliation(s)
- Jianhua Tian
- Chemical Synthesis Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Erin R. Aho
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Joseph R. Alvarado
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jonathan J. Mills
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Kenneth M. Meyers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rocco D. Gogliotti
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Changho Han
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jonathan D. Macdonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - J. Grace Shaw
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - John L. Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Tyson A. Rietz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Lance R. Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William G. Payne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William J. Moore
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shaun R. Stauffer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
4
|
Wang F, Jeon KO, Salovich JM, Macdonald JD, Alvarado J, Gogliotti RD, Phan J, Olejniczak ET, Sun Q, Wang S, Camper D, Yuh JP, Shaw JG, Sai J, Rossanese OW, Tansey WP, Stauffer SR, Fesik SW. Discovery of Potent 2-Aryl-6,7-dihydro-5 H-pyrrolo[1,2- a]imidazoles as WDR5-WIN-Site Inhibitors Using Fragment-Based Methods and Structure-Based Design. J Med Chem 2018; 61:5623-5642. [PMID: 29889518 PMCID: PMC6842305 DOI: 10.1021/acs.jmedchem.8b00375] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5 H-pyrrolo[1,2- a]imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Kyu Ok Jeon
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - James M. Salovich
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Joseph Alvarado
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Rocco D. Gogliotti
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Qi Sun
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Shidong Wang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - DeMarco Camper
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Joannes P. Yuh
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - J. Grace Shaw
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Olivia W. Rossanese
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - William P. Tansey
- Department of Cell and Developmental Biology Vanderbilt University, Nashville, Tennessee 37232
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Vedadi M, Blazer L, Eram MS, Barsyte-Lovejoy D, Arrowsmith CH, Hajian T. Targeting human SET1/MLL family of proteins. Protein Sci 2017; 26:662-676. [PMID: 28160335 PMCID: PMC5368065 DOI: 10.1002/pro.3129] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and compare our findings with what has been reported before. We also review exciting recent work identifying potent inhibitors of oncogenic MLL1 function through disruption of protein–protein interactions within the MLL1 complex.
Collapse
Affiliation(s)
- Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8
| | - Levi Blazer
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| |
Collapse
|