1
|
Bagdonaitė R, Žvirblis R, Dodonova-Vaitku̅nienė J, Polita A. Cancer Cell Identification via Lysosomal Membrane Microviscosities Using a Green-Emitting BODIPY Molecular Rotor. JACS AU 2025; 5:2004-2014. [PMID: 40313834 PMCID: PMC12042019 DOI: 10.1021/jacsau.5c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025]
Abstract
Lysosomes are dynamic, membrane-bound organelles that play key roles in cellular waste disposal, macromolecule recycling, and signaling. Disruptions in lysosomal function and lipid composition are implicated in a wide range of diseases including lysosomal storage disorders, fatty liver disease, atherosclerosis, and cancer. Imaging of the lysosomal lipid composition has the potential to not only enhance the understanding of lysosome-related diseases and their progression but also help identify them. In this work, we present a novel viscosity-sensitive, green-emitting BODIPY probe that can distinguish between ordered and disordered lipid phases and selectively internalize into the lysosomal membranes of live cells. Through the use of fluorescence lifetime imaging microscopy, we demonstrate that lysosomal membranes in multiple cancer cells exhibit significantly higher microviscosities compared to noncancer cells. The differences in lysosomal microviscosities provide an effective approach for identifying cancer cells and indicate that malignant cells may possess more oxidized and saturated lysosomal lipid membranes. Furthermore, we demonstrate the utility of viscosity-sensitive probes in quantifying the compositional changes in lysosomal membranes by investigating the effects of lysosome-permeabilizing cationic amphiphilic drugs (CADs), sertraline, and astemizole. Our results reveal that despite their functional similarities, these CADs exert opposite effects on lysosomal microviscosities in both cancerous and noncancerous cells, suggesting that different mechanisms may contribute to the CAD-induced lysosomal damage and leakage.
Collapse
Affiliation(s)
- Ru̅ta Bagdonaitė
- Department
of Biospectroscopy and Bioelectrochemistry, Institute of Biochemistry,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Rokas Žvirblis
- Department
of Biothermodynamics and drug design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Jelena Dodonova-Vaitku̅nienė
- Department
of Organic Chemistry, Faculty of Chemistry and Geosciences, Institute
of Chemistry, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Artu̅ras Polita
- Department
of Biospectroscopy and Bioelectrochemistry, Institute of Biochemistry,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Hu M, Liu R, Castro N, Sanchez LL, Learn J, Huang R, Lam KS, Carraway KL. Structure-Activity Relationship Study Identifies a Novel Lipophilic Amiloride Derivative that Efficiently Kills Chemoresistant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542364. [PMID: 37292759 PMCID: PMC10245970 DOI: 10.1101/2023.05.25.542364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC 50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.
Collapse
|
4
|
Muntean C, Blondeel E, Harinck L, Pednekar K, Prakash J, De Wever O, Chain JL, De Smedt SC, Remaut K, Raemdonck K. Repositioning the antihistamine ebastine as an intracellular siRNA delivery enhancer. Int J Pharm 2023; 644:123348. [PMID: 37633539 DOI: 10.1016/j.ijpharm.2023.123348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Small interfering RNAs (siRNAs) are promising therapeutics for the treatment of human diseases via the induction of sequence-specific gene silencing. To be functional, siRNAs require cytosolic delivery into target cells. However, state-of-the-art delivery systems mediate cellular entry through endocytosis and suffer from ineffective endosomal escape, routing a substantial fraction of the siRNA towards the lysosomal compartment. Cationic amphiphilic drugs (CADs) have been described to improve cytosolic siRNA delivery by the transient induction of lysosomal membrane permeabilization. In this work, we evaluated ebastine, an antihistamine CAD, for its ability to enhance cytosolic release of siRNA in a non-small cell lung cancer model. In particular, we demonstrated that ebastine can improve the siRNA-mediated gene silencing efficiency of a polymeric nanogel by 40-fold, outperforming other CAD compounds. Additionally, ebastine substantially enhanced gene knockdown of a cholesterol-conjugated siRNA, in two-dimensional (2D) cell culture as well as in three-dimensional (3D) tumor spheroids. Finally, ebastine could strongly promote siRNA delivery of lipid nanoparticles (LNPs) composed of a pH-dependent switchable ionizable lipid and with stable PEGylation, in contrast to state-of-the-art LNP formulations. Altogether, we identified ebastine as a potent and versatile siRNA delivery enhancer in cancer cells, which offers opportunities for drug combination therapy in oncology.
Collapse
Affiliation(s)
- Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Eva Blondeel
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, UZ-Gent, 2RTP, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Laure Harinck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kunal Pednekar
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, 7500 AE Enschede, The Netherlands
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, UZ-Gent, 2RTP, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jeanne Leblond Chain
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Ghent Light Microscopy (GLiM) Core, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Jana B, Jin S, Go EM, Cho Y, Kim D, Kim S, Kwak SK, Ryu JH. Intra-Lysosomal Peptide Assembly for the High Selectivity Index against Cancer. J Am Chem Soc 2023; 145:18414-18431. [PMID: 37525328 DOI: 10.1021/jacs.3c04467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
7
|
Zhang ZH, Zhang RJ, Han N, Li C, Wang LL, Xing EH, Gu CH, Hao CL. [Transcription factor EB related autophagy in the treatment of multiple myeloma and its mechanism]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:407-414. [PMID: 34218584 PMCID: PMC8292998 DOI: 10.3760/cma.j.issn.0253-2727.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/19/2022]
Abstract
Objective: To clarify the effects of bortezomib combined with or without siramesine on the proliferation of multiple myeloma cell lines, the expression changes of transcription factor EBC (TFEB) nuclear translocation and the level of autophagy, and to provide basis for further exploring the regulation mechanism of transcription factor TFEB on autophagy. Methods: The multiple myeloma cell lines RPMI8226 and U266 were cultured in vitro, and the multiple myeloma cells were treated with a certain concentration of bortezomib and siramesine. The changes of cell proliferation inhibition were detected by CCK-8 method. Real time PCR and Western blot were used to detect the relative expression of TFEB, autophagy-related factor LC3B, Beclin1, p62, LAMP1 mRNA and protein. Results: As the concentration of bortezomib increased and the duration of action increased, the proliferation inhibition rates of the two cell lines gradually increased (P<0.05) . The combination of the two drugs has a synergistic inhibitory effect on the proliferation of the above-mentioned multiple myeloma cell lines (P<0.05) . In the blank control group, single drug group, and combination drug group, the relative expression of TFEB mRNA and protein in the cytoplasm decreased sequentially (P<0.05) , and the relative expression of TFEB mRNA and protein in the nucleus increased sequentially (P<0.05) . The relative expression of autophagy-related factors LC3B, Beclin1, LAMP1 mRNA and protein increased sequentially, and the relative expression of p62 mRNA and protein decreased sequentially (P<0.05) . Conclusion: Bortezomib and siramesine can synergistically inhibit the growth of multiple myeloma cells, which is related to the increased autophagy expression in multiple myeloma cell lines and the expression of TFEB with nuclear translocation is also enhanced.
Collapse
Affiliation(s)
- Z H Zhang
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - R J Zhang
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - N Han
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - C Li
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - L L Wang
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - E H Xing
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - C H Gu
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - C L Hao
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| |
Collapse
|
8
|
Wang S, Jin S, Li G, Sun R, Shu Q, Wu S. Decompression Process of Glycerol Shock Treatment Can Overcome Endo-Lysosomal Barriers for Intracellular Delivery. ACS OMEGA 2020; 5:33133-33139. [PMID: 33403275 PMCID: PMC7774252 DOI: 10.1021/acsomega.0c04771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The glycerol shock treatment has been used to improve the calcium phosphate transfection efficacy for several decades because of its high effectiveness and low toxicity. However, the mechanism of glycerol shock treatment is still obscure. In this study, the endo-lysosomal leakage assay demonstrated that the decompression process of glycerol shock treatment could enhance endo-lysosomal membrane permeabilization, which resulted in facilitating endo-lysosomal escape for effective intracellular delivery. The enhanced decompression treatment derived from glycerol shock treatment could increase the change of osmotic pressure further, which showed higher efficacy for intracellular delivery. Herein, we speculated that the endo-lysosomal swelling originated from the decompression process of glycerol shock treatment could cause endo-lysosomal damage.
Collapse
Affiliation(s)
- Shupeng Wang
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Shaohua Jin
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Guangzhi Li
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Rui Sun
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Qinghai Shu
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Song Wu
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| |
Collapse
|
9
|
Paunovic V, Kosic M, Misirkic-Marjanovic M, Trajkovic V, Harhaji-Trajkovic L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118944. [PMID: 33383091 DOI: 10.1016/j.bbamcr.2020.118944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Maja Misirkic-Marjanovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
10
|
Abstract
Small interfering RNAs (siRNAs) are a new class of promising therapeutic molecules that can be used for sequence-specific downregulation of disease-causing genes. However, endosomal entrapment of siRNA is a key hurdle for most delivery strategies, limiting the therapeutic effect. Here, we use live-cell microscopy and cytosolic galectin-9 as a sensor of membrane damage, to probe fundamental properties of endosomal escape of cholesterol-conjugated siRNA induced by endosome-disrupting compounds. We demonstrate efficient release of ligand-conjugated siRNA from vesicles damaged by small molecules, enhancing target knockdown up to ∼47-fold in tumor cells. Still, mismatch between siRNA-containing and drug-targeted endolysosomal compartments limits siRNA activity improvement. We also show widespread endosomal damage in macroscopic tumor spheroids after small molecule treatment, substantially improving siRNA delivery and knockdown throughout the spheroid. We believe the strategy to characterize endosomal escape presented here will be widely applicable, facilitating efforts to improve delivery of siRNA and other nucleic acid-based therapeutics.
Collapse
|
11
|
Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho YK, Kandere-Grzybowska K, Grzybowski BA. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. NATURE NANOTECHNOLOGY 2020; 15:331-341. [PMID: 32203435 DOI: 10.1038/s41565-020-0643-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/14/2020] [Indexed: 05/28/2023]
Abstract
Lysosomes have become an important target for anticancer therapeutics because lysosomal cell death bypasses the classical caspase-dependent apoptosis pathway, enabling the targeting of apoptosis- and drug-resistant cancers. However, only a few small molecules-mostly repurposed drugs-have been tested so far, and these typically exhibit low cancer selectivity, making them suitable only for combination therapies. Here, we show that mixed-charge nanoparticles covered with certain ratios of positively and negatively charged ligands can selectively target lysosomes in cancerous cells while exhibiting only marginal cytotoxicity towards normal cells. This selectivity results from distinct pH-dependent aggregation events, starting from the formation of small, endocytosis-prone clusters at cell surfaces and ending with the formation of large and well-ordered nanoparticle assemblies and crystals inside cancer lysosomes. These assemblies cannot be cleared by exocytosis and cause lysosome swelling, which gradually disrupts the integrity of lysosomal membranes, ultimately impairing lysosomal functions and triggering cell death.
Collapse
Affiliation(s)
- Magdalena Borkowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Marta Siek
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Diana V Kolygina
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yaroslav I Sobolev
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Slawomir Lach
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kristiana Kandere-Grzybowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| | - Bartosz A Grzybowski
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
12
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
13
|
Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, Schambye H, Nilsson UJ, Oredsson S, Leffler H. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci Rep 2019; 9:2186. [PMID: 30778105 PMCID: PMC6379368 DOI: 10.1038/s41598-019-38497-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023] Open
Abstract
Galectin-3 is a carbohydrate binding protein which has important roles in cancer and immunity. Potent galectin-3 inhibitors have been synthesized, for experimental purposes and potential clinical use. As galectin-3 is implicated in both intra- and extracellular activities, permeability of galectin-3 inhibitors is an important parameter determining biological effects. We compared the cellular uptake of galectin-3 inhibitors and their potency in the intracellular or extracellular space. The inhibitors differed in their polar surface area (PSA), but had similar affinities for galectin-3. Using a well-established permeability assay, we confirmed that the uptake was significantly higher for the inhibitor with the lowest PSA, as expected. To analyze intracellular activity of the inhibitors, we developed a novel assay based on galectin-3 accumulation around damaged intracellular vesicles. The results show striking differences between the inhibitors intracellular potency, correlating with their PSAs. To test extracellular activity of the inhibitors, we analyzed their potency to block binding of galectin-3 to cell surfaces. All inhibitors were equally able to block galectin-3 binding to cells and this was proportional to their affinity for galectin-3. These inhibitors may serve as useful tools in exploring biological roles of galectin-3 and may further our understanding of intracellular versus extracellular roles of galectin-3.
Collapse
Affiliation(s)
- John Stegmayr
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| | | | - Michael C Carlsson
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.,Agilent Technologies Denmark ApS, 2600, Glostrup, Denmark
| | - Xiaoli Huang
- Department of Biology, Lund University, 22100, Lund, Sweden.,Xintela AB, 22381, Lund, Sweden
| | - Gunjan Sharma
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
14
|
Zhang P, Kiseleva AA, Korobeynikov V, Liu H, Einarson MB, Golemis EA. Microscopy-Based Automated Live Cell Screening for Small Molecules That Affect Ciliation. Front Genet 2019; 10:75. [PMID: 30809247 PMCID: PMC6379280 DOI: 10.3389/fgene.2019.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
The primary monocilium, or cilium, is a single antenna-like organelle that protrudes from the surface of most mammalian cell types, and serves as a signaling hub. Mutations of cilia-associated genes result in severe genetic disorders termed ciliopathies. Among these, the most common is autosomal dominant polycystic kidney disease (ADPKD); less common genetic diseases include Bardet–Biedl syndrome, Joubert syndrome, nephronophthisis, and others. Important signaling cascades with receptor systems localized exclusively or in part at cilia include Sonic Hedgehog (SHH), platelet derived growth factor alpha (PDGFRα), WNTs, polycystins, and others. Changes in ciliation during development or in pathological conditions such as cancer impacts signaling by these proteins. Notably, ciliation status of cells is coupled closely to the cell cycle, with cilia protruding in quiescent (G0) or early G1 cells, declining in S/G2, and absent in M phase, and has been proposed to contribute to cell cycle regulation. Because of this complex biology, the elaborate machinery regulating ciliary assembly and disassembly receives input from many cellular proteins relevant to cell cycle control, development, and oncogenic transformation, making study of genetic factors and drugs influencing ciliation of high interest. One of the most effective tools to investigate the dynamics of the cilia under different conditions is the imaging of live cells. However, developing assays to observe the primary cilium in real time can be challenging, and requires a consideration of multiple details related to the cilia biology. With the dual goals of identifying small molecules that may have beneficial activity through action on human diseases, and of identifying ciliary activities of existing agents that are in common use or development, we here describe creation and evaluation of three autofluorescent cell lines derived from the immortalized retinal pigmented epithelium parental cell line hTERT-RPE1. These cell lines stably express the ciliary-targeted fluorescent proteins L13-Arl13bGFP, pEGFP-mSmo, and tdTomato-MCHR1-N-10. We then describe methods for use of these cell lines in high throughput screening of libraries of small molecule compounds to identify positive and negative regulators of ciliary disassembly.
Collapse
Affiliation(s)
- Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China.,Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
15
|
Abstract
Loss of lysosomal membrane integrity, often referred to as lysosomal membrane permeabilization (LMP), occurs in many instances of cell death either as an initiating or as an amplifying event. Currently, the best method for detecting LMP is the galectin puncta formation assay which can be used for a broad range of sample types, both fixed and live, is easy to perform, and highly sensitive. This method, which is similar to the widely used LC3 puncta formation assay for autophagy, is based on the translocation of galectins to damaged lysosomes resulting in a change from uniform to punctate staining pattern. Here, we provide protocols for the galectin puncta formation assay in fixed and live cells and for an alternative assay based on fluorescent dextran release from damaged lysosomes, which can be performed in parallel.
Collapse
Affiliation(s)
- Sonja Aits
- Cell Death and Lysosomes Group, Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| |
Collapse
|
16
|
Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic 2018; 19:918-931. [DOI: 10.1111/tra.12613] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Fengjuan Wang
- Unit Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, CNRS/Université de Strasbourg; Illkirch France
| | - Raquel Gómez-Sintes
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|