1
|
Shi J, Ma Y, Yu N, Zhang Y, Cao Z, Guan L, Liu X, Chen Z, Jia G. Key toxic pathways of hepatotoxicity induced by titanium dioxide nanoparticles through multi-omics analysis. Food Chem Toxicol 2025; 201:115457. [PMID: 40250523 DOI: 10.1016/j.fct.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
The liver is considered a target organ for the accumulation and toxic effects of nanomaterials exposed to the body, especially after oral exposure, but the key toxic pathways have not been fully defined. This study focused on the hepatotoxicity of titanium dioxide nanoparticles (TiO2 NPs) in vivo and in vitro, and tried to identify key toxic pathways using the concept of systems biology and multi-omics methods. In vivo, protein and metabolomic sequencing were performed on the liver of SD rats (0, 50 mg/kg, 90 days), and 386 differential proteins and 29 differential metabolites were screened out, respectively, and the joint analysis found that they were significantly enriched in alanine, aspartate and glutamate metabolism, and butanoate metabolism. In vitro, exposure to TiO2 NPs could induce cytotoxicity and omics changes at different molecular levels in human hepatocellular carcinoma cells. Single omic analysis showed that differentially expressed proteins and metabolites were 80 and 222, respectively. The enriched pathways related to steroid biosynthesis, cholesterol metabolism at the combine levels of proteome and metabolome. KEGG enrichment analysis showed that PI3K-Akt signaling pathway and PPAR signaling pathway were both significantly affected in vitro and in vivo. Through multi-omics analysis, this work offered fresh perspectives and avenues for research on the toxicity mechanism of TiO2 NPs.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China; National Human Genetic Resources Center, Beijing, 102206, People's Republic of China
| | - Li Guan
- Department of Occupational Disease, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Treatment, No. 50 Yikesong Xiangshan, Haidian District, Beijing, 100093, People's Republic of China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
2
|
Al-Samerria S, Xu H, Diaz-Rubio ME, Phelan J, Su C, Ma K, Newen A, Li K, Yamada S, Negron AL, Wondisford F, Radovick S. Biomarkers of GH deficiency identified in untreated and GH-treated Pit-1 mutant mice. Front Endocrinol (Lausanne) 2025; 16:1539797. [PMID: 40370773 PMCID: PMC12074916 DOI: 10.3389/fendo.2025.1539797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/13/2025] [Indexed: 05/16/2025] Open
Abstract
Background Growth Hormone Deficiency (GHD) is marked by insufficient growth hormone (GH) production, leading to disruptions in growth and metabolism. Its diagnosis is challenging due to the lack of sensitive, specific tests. To address this, we used a novel mouse model with a POU1F1 (Pit-1) gene mutation (K216E). This study aimed to identify metabolic biomarkers of GHD and assess their responsiveness to GH therapy, alongside pathway analysis to uncover disrupted metabolic pathways. Methods The Pit-1^K216E mouse model was validated for GHD through assessments of GH production, growth, and body composition. Metabolomic profiling was conducted to identify biomarkers, while pathway analysis examined disrupted metabolic pathways and their response to GH treatment. This approach aimed to improve understanding of GHD's metabolic impact and potential therapeutic strategies. Results The assessment of the Pit-1^K216E mouse confirmed GHD, as evidenced by reduced GH production and altered body composition. Metabolomic profiling identified three distinct biomarker groups associated with GHD: (1) GHD Biomarkers, found exclusively in GH-deficient mutant mice but absent in WT controls; (2) GH Treatment Responsive Biomarkers, which were altered in GH-deficient mutant mice (GHD) and further modulated following GH treatment, reflecting a response specific to the GHD condition and its treatment, but not observed in WT mice; and (3) GH Treatment-Specific Responsive Biomarkers, observed exclusively in the GHD condition after GH therapy. Pathway analysis revealed significant disruptions in purine metabolism, amino acid metabolism, and protein synthesis, with notable sex-specific differences. Male mice exhibited imbalances in taurine and hypotaurine metabolism, while female mice showed disruptions in tyrosine metabolism and mitochondrial function, highlighting sex-dependent metabolic responses to GHD and GH therapy. Conclusion The Pit-1^K216E mouse model offers a robust platform for exploring GHD's molecular mechanisms. The identification of distinct, sex-specific metabolic biomarkers provides insights into GHD-related metabolic disruptions and supports personalized management strategies. These findings establish a framework for leveraging metabolic biomarkers to enhance the diagnosis and monitoring of GHD, with promising applications for future human studies and therapeutic strategies.
Collapse
Affiliation(s)
- Sarmed Al-Samerria
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - M. Elena Diaz-Rubio
- Rutgers Cancer Institute, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Joseph Phelan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Chi Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Keer Ma
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Anna Newen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kiana Li
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sayaka Yamada
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Ariel L. Negron
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Fredric Wondisford
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sally Radovick
- Department of Pediatrics, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
3
|
Watkins RR, Kavoor A, Musier-Forsyth K. Strategies for detecting aminoacylation and aminoacyl-tRNA editing in vitro and in cells. Isr J Chem 2024; 64:e202400009. [PMID: 40066018 PMCID: PMC11892019 DOI: 10.1002/ijch.202400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 03/14/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) maintain translational fidelity by ensuring the formation of correct aminoacyl-tRNA pairs. Numerous point mutations in human aaRSs have been linked to disease phenotypes. Structural studies of aaRSs from human pathogens encoding unique domains support these enzymes as potential candidates for therapeutics. Studies have shown that the identity of tRNA pools in cells changes between different cell types and under stress conditions. While traditional radioactive aminoacylation analyses can determine the effect of disease-causing mutations on aaRS function, these assays are not amenable to drug discovery campaigns and do not take into account the variability of the intracellular tRNA pools. Here, we review modern techniques to characterize aaRS activity in vitro and in cells. The cell-based approaches analyse the aminoacyl-tRNA pool to observe trends in aaRS activity and fidelity. Taken together, these approaches allow high-throughput drug screening of aaRS inhibitors and systems-level analyses of the dynamic tRNA population under a variety of conditions and disease states.
Collapse
Affiliation(s)
- Rylan R. Watkins
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Sadowska P, Jankowski W, Bregier-Jarzębowska R, Pietrzyk P, Jastrząb R. Deciphering the Impact of Nucleosides and Nucleotides on Copper Ion and Dopamine Coordination Dynamics. Int J Mol Sci 2024; 25:9137. [PMID: 39273086 PMCID: PMC11394690 DOI: 10.3390/ijms25179137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The mode of coordination of copper(II) ions with dopamine (DA, L) in the binary, as well as ternary systems with Ado, AMP, ADP, and ATP (L') as second ligands, was studied with the use of experimental-potentiometric and spectroscopic (VIS, EPR, NMR, IR)-methods and computational-molecular modeling and DFT-studies. In the Cu(II)/DA system, depending on the pH value, the active centers of the ligand involved in the coordination with copper(II) ions changed from nitrogen and oxygen atoms (CuH(DA)3+, Cu(DA)2+), via nitrogen atoms (CuH2(DA)24+), to oxygen atoms at strongly alkaline pH (Cu(DA)22+). The introduction of L' into this system changed the mode of interaction of dopamine from oxygen atoms to the nitrogen atom in the hydroxocomplexes formed at high pH values. In the ternary systems, the ML'-L (non-covalent interaction) and ML'HxL, ML'L, and ML'L(OH)x species were found. In the Cu(II)/DA/AMP or ATP systems, mixed forms were formed up to a pH of around 9.0; above this pH, only Cu(II)/DA complexes occurred. In contrast to systems with AMP and ATP, ternary species with Ado and ADP occurred in the whole pH range at a high concentration, and moreover, binary complexes of Cu(II) ions with dopamine did not form in the detectable concentration.
Collapse
Affiliation(s)
- Patrycja Sadowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Wojciech Jankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | - Piotr Pietrzyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Airhihen B, Pavanello L, Maryati M, Winkler GS. Quantitative Biochemical Analysis of Deadenylase Enzymes Using Fluorescence and Chemiluminescence-Based Assays. Methods Mol Biol 2024; 2723:55-68. [PMID: 37824064 DOI: 10.1007/978-1-0716-3481-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deadenylase enzymes play a key role in mRNA degradation and RNA processing. In this chapter, we describe two activity assays for the quantitative biochemical analysis of deadenylase enzymes, which can easily be adapted for other nuclease enzymes. The assays use distinct principles of detection, which are based on differential annealing of a probe complementary to the substrate RNA or detection of adenosine monophosphate (AMP). The assays are sensitive, flexible, and can be used in low-throughput tube-based formats and 96-well or 384-well plate formats. The assays rely on plate reader detection and can be carried out using manual pipetting or robotic liquid handling equipment. In addition to two activity assays, we describe differential scanning fluorimetry (thermal shift assay) as a complementary assay that allows the direct characterization of ligand binding to deadenylase enzymes. The assays can be useful for the characterization of deadenylase variants and are particularly suitable for the discovery and development of small-molecule inhibitors of deadenylase enzymes.
Collapse
Affiliation(s)
- Blessing Airhihen
- School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maryati Maryati
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | | |
Collapse
|
6
|
Uthailak N, Adisakwattana P, Chienwichai P, Tipthara P, Tarning J, Thawornkuno C, Thiangtrongjit T, Reamtong O. Metabolite profiling of Trichinella spiralis adult worms and muscle larvae identifies their excretory and secretory products. Front Cell Infect Microbiol 2023; 13:1306567. [PMID: 38145042 PMCID: PMC10749202 DOI: 10.3389/fcimb.2023.1306567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.
Collapse
Affiliation(s)
- Naphatsamon Uthailak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
8
|
Exploring the Muscle Metabolomics in the Mouse Model of Sepsis-Induced Acquired Weakness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6908488. [PMID: 36016684 PMCID: PMC9398772 DOI: 10.1155/2022/6908488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
Background/Aim We aimed to identify the differentially expressing metabolites (DEMs) in the muscles of the mouse model of sepsis-induced acquired weakness (sepsis-AW) using liquid chromatography-mass spectrometry (LC-MS). Materials and Methods Sepsis by cecal ligation puncture (CLP) with lower limb immobilization was used to produce a sepsis-AW model. After this, the grip strength of the C57BL/6 male mice was investigated. The transmission electron microscopy was utilized to determine the pathological model. LC-MS was used to detect the metabolic profiles within the mouse muscles. Additionally, a statistically diversified analysis was carried out. Results Compared to the sepsis group, 30 DEMs, including 17 upregulated and 13 down-regulated metabolites, were found in the sepsis-AW group. The enriched metabolic pathways including purine metabolism, valine/leucine/isoleucine biosynthesis, cGMP-PKG pathway, mTOR pathway, FoxO pathway, and PI3K-Akt pathway were found to differ between the two groups. The targeted metabolomics analysis explored significant differences between four amino acid metabolites (leucine, cysteine, tyrosine, and serine) and two energy metabolites (AMP and cAMP) in the muscles of the sepsis-AW experimental model group, which was comparable to the sepsis group. Conclusion The present work identified DEMs and metabolism-related pathways within the muscles of the sepsis-AW mice, which offered valuable experimental data for diagnosis and identification of the pathogenic mechanism underlying sepsis-AW.
Collapse
|
9
|
Wu S, Zheng L, Hei Z, Zhou JB, Li G, Li P, Wang J, Ali H, Zhou XL, Wang J, Fang P. Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex. Cell Mol Life Sci 2022; 79:128. [PMID: 35133502 PMCID: PMC11072160 DOI: 10.1007/s00018-022-04158-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.
Collapse
Affiliation(s)
- Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Guang Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiayuan Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hamid Ali
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
10
|
Huang T, Zhang W, Lin T, Liu S, Sun Z, Liu F, Yuan Y, Xiang X, Kuang H, Yang B, Zhang D. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring. Food Chem Toxicol 2022; 160:112803. [PMID: 34990788 DOI: 10.1016/j.fct.2021.112803] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Nanoplastics have raised considerable concerns since their ubiquity in the environment and potential hazard to health. It has been proven that polystyrene nanoparticles (PS-NPs) can be maternally transferred to the offspring. In this study, mice were exposed gestationally and lactationally to PS-NPs (size 100 nm) at different doses (0.1, 1 and 10 mg/L) to investigate the trans-generational poisonousness. Our data illustrated that maternal PS-NPs exposure in pregnancy and lactation resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, high-dose PS-NPs reduced liver weight, triggered oxidative stress, caused inflammatory cell infiltration, up-regulated proinflammatory cytokine expression, and disturbed glycometabolism in the liver of male offspring mice. In addition, pre- and postnatal PS-NPs exposure diminished testis weight, disrupted seminiferous epithelium and decreased sperm count in mouse offspring. Moreover, PS-NPs induced testicular oxidative injury, as presented by increased malondialdehyde generation and altered superoxide dismutase and catalase activities in the testis of offspring mice. These findings declared that maternal exposure to PS-NPs in pregnancy and lactation can cause hepatic and testicular toxicity in male mouse pups, which put forward new understanding into the detrimental effects of nanoplastics on mammalian offspring.
Collapse
Affiliation(s)
- Tao Huang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Wenjuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Tingting Lin
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Shujuan Liu
- Reproductive Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zhangbei Sun
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Fangming Liu
- Nursing School of Nanchang University, Nanchang, 330006, PR China
| | - Yangyang Yuan
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Xiting Xiang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
11
|
Cho J, Kim S. Selective sensing of adenosine monophosphate (AMP) by a calix[6]triazolium-based colorimetric sensing ensemble. RSC Adv 2022; 12:32784-32789. [DOI: 10.1039/d2ra05987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
A calix[6]triazolium-based colorimetric sensing ensemble has been developed that exhibits a distinct color change in the presence of AMP.
Collapse
Affiliation(s)
- Jihee Cho
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
12
|
Liu D, Sun W, Zhang D, Yu Z, Qin W, Liu Y, Zhang K, Yin J. Long noncoding RNA GSEC promotes neutrophil inflammatory activation by supporting PFKFB3-involved glycolytic metabolism in sepsis. Cell Death Dis 2021; 12:1157. [PMID: 34907156 PMCID: PMC8671582 DOI: 10.1038/s41419-021-04428-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming is a hallmark of neutrophil activation in sepsis. LncRNAs play important roles in manipulating cell metabolism; however, their specific involvement in neutrophil activation in sepsis remains unclear. Here we found that 11 lncRNAs and 105 mRNAs were differentially expressed in three transcriptome datasets (GSE13904, GSE28750, and GSE64457) of gene expression in blood leukocytes and neutrophils of septic patients and healthy volunteers. After Gene Ontology biological process analysis and lncRNA-mRNA pathway network construction, we noticed that GSEC lncRNA and PFKFB3 were co-expressed and associated with enhanced glycolytic metabolism. Our clinical observations confirmed the expression patterns of GSEC lncRNA and PFKFB3 genes in neutrophils in septic patients. Performing in vitro experiments, we found that the expression of GSEC lncRNA and PFKFB3 was increased when neutrophils were treated with inflammatory stimuli. Knockdown and overexpression experiments showed that GSEC lncRNA was essential for mediating PFKFB3 mRNA expression and stability in neutrophil-like dHL-60 cells. In addition, we found that GSEC lncRNA-induced PFKFB3 expression was essential for mediating dHL-60 cell inflammatory cytokine expression. Performing mechanistic experiments, we found that glycolytic metabolism with PFKFB3 involvement supported inflammatory cytokine expression. In summary, our study uncovers a mechanism by which GSEC lncRNA promotes neutrophil inflammatory activation in sepsis by supporting glycolytic metabolism with PFKFB3.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Critical Care Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Danying Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zongying Yu
- Department of Electrocardiograph, The No. 4 Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yishu Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiangtao Yin
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Kasson S, Dharmapriya N, Kim IK. Selective monitoring of the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. PLoS One 2021; 16:e0254022. [PMID: 34191856 PMCID: PMC8244878 DOI: 10.1371/journal.pone.0254022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
ADP-ribosylation is a key post-translational modification that regulates a wide variety of cellular stress responses. The ADP-ribosylation cycle is maintained by writers and erasers. For example, poly(ADP-ribosyl)ation cycles consist of two predominant enzymes, poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolase (PARG). However, historically, mechanisms of erasers of ADP-ribosylations have been understudied, primarily due to the lack of quantitative tools to selectively monitor specific activities of different ADP-ribosylation reversal enzymes. Here, we developed a new NUDT5-coupled AMP-Glo (NCAG) assay to specifically monitor the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. We found that NUDT5 selectively cleaves protein-free ADP-ribose, but not protein-bound poly- and mono-ADP-ribosylations, protein-free poly(ADP-ribose) chains, or NAD+. As a proof-of-concept, we successfully measured the kinetic parameters for the exo-glycohydrolase activity of PARG, which releases monomeric ADP-ribose, and monitored activities of site-specific mono-ADP-ribosyl-acceptor hydrolases, such as ARH3 and TARG1. This NCAG assay can be used as a general platform to study the mechanisms of diverse ADP-ribosylation reversal enzymes that release protein-free ADP-ribose as a product. Furthermore, this assay provides a useful tool to identify small-molecule probes targeting ADP-ribosylation metabolism and to quantify ADP-ribose concentrations in cells.
Collapse
Affiliation(s)
- Samuel Kasson
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nuwani Dharmapriya
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
14
|
Atienza J, Tkachyova I, Tropak M, Fan X, Schulze A. Fluorometric coupled enzyme assay for N-sulfotransferase activity of N-deacetylase/N-sulfotransferase (NDST). Glycobiology 2021; 31:1093-1101. [PMID: 34080004 DOI: 10.1093/glycob/cwab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
N-Deacetylase/N-sulfotransferases (NDST) are critical enzymes in heparan sulfate (HS) biosynthesis. Radioactive labeling assays are the preferred methods to determine the N-sulfotransferase activity of NDST. In this study, we developed a fluorometric coupled enzyme assay that is suitable for the study of enzyme kinetics and inhibitory properties of drug candidates derived from a large-scale in silico screening targeting the sulfotransferase moiety of NDST1. The assay measures recombinant mouse NDST1 (mNDST1) sulfotransferase activity by employing its natural substrate adenosine 3'-phophoadenosine-5'-phosphosulfate (PAPS), a bacterial analog of desulphated human HS, Escherichia coli K5 capsular polysaccharide (K5), the fluorogenic substrate 4-methylumbelliferylsulfate, and a double mutant of rat phenol sulfotransferase SULT1A1 K56ER68G. Enzyme kinetic analysis of mNDST1 performed with the coupled assay under steady state conditions at pH 6.8 and 37 °C revealed Km (K5) 34.8 μM, Km (PAPS) 10.7 μM, Vmax (K5) 0.53 ± 0.13 nmol/min/μg enzyme, Vmax (PAPS) 0.69 ± 0.05 nmol/min/μg enzyme, and the specific enzyme activity of 394 pmol/min/μg enzyme. The pH optimum of mNDST1 is pH 8.2. Our data indicate that mNDST1 is specific for K5 substrate. Finally, we showed that the mNDST1 coupled assay can be utilized to assess potential enzyme inhibitors for drug development.
Collapse
Affiliation(s)
- Joshua Atienza
- University of Toronto Scarborough, Toronto, Ontario, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Michael Tropak
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Xiaolian Fan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Andreas Schulze
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada.,Departments of Pediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
16
|
Hua Y, Liu D, Zhang D, Wang X, Wei Q, Qin W. Extracellular AMP Suppresses Endotoxemia-Induced Inflammation by Alleviating Neutrophil Activation. Front Immunol 2020; 11:1220. [PMID: 32733440 PMCID: PMC7358592 DOI: 10.3389/fimmu.2020.01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Intracellular adenosine monophosphate (AMP) is indispensable for cellular metabolic processes, and it is interconverted to ADP and/or ATP or activates AMP-activated protein kinase (AMPK). However, the specific biological function of extracellular AMP has not been identified. We evaluated the effect of extracellular AMP using in vivo and in vitro models of endotoxemia. We found that AMP inhibited inflammation and neutrophil activation in lipopolysaccharide (LPS)-induced endotoxemic mice. The effects of extracellular AMP were abolished by an adenosine 1 receptor (A1R) antagonist but were not influenced by inhibiting the conversion of AMP to adenosine (ADO), indicating that AMP inhibited inflammation by directly activating A1R. In addition, in vitro experiments using LPS-stimulated mouse neutrophils showed that AMP inhibited LPS-induced reactive oxygen species (ROS) production, degranulation, and cytokine production, while the effects were reversed by an A1R antagonist. Further research showed that AMP regulated LPS-stimulated neutrophil functions by inhibiting the p38 MAPK pathway. These findings were also confirmed in primary neutrophils derived from healthy human blood. Moreover, we collected serum samples from septic patients. We found that AMP levels were increased compared with those of healthy volunteers and that AMP levels were negatively correlated with disease severity. Together, these data provide evidence that extracellular AMP acts on A1R to suppress endotoxemia-induced inflammation by inhibiting neutrophil overactivation and that the p38 MAPK signaling pathway is involved.
Collapse
Affiliation(s)
- Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dadong Liu
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Danyi Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital Jiangsu University Zhenjiang, Zhenjiang, China
| | - Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Wei
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiting Qin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Goueli SA, Hsiao K. Monitoring and characterizing soluble and membrane-bound ectonucleotidases CD73 and CD39. PLoS One 2019; 14:e0220094. [PMID: 31652269 PMCID: PMC6814236 DOI: 10.1371/journal.pone.0220094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
The success of immunotherapy treatment in oncology ushered a new modality for treating a wide variety of cancers. However, lack of effect in some patients made it imperative to identify other pathways that are exploited by cancer cells to circumvent immune surveillance, and possibly synergize immune checkpoint treatment in those cases. It has been recently recognized that adenosine levels increase significantly in the tumor microenvironment and that adenosine/adenosine receptors play a powerful role as immunosuppressive and attenuating several effector T cell functions. The two main enzymes responsible for generating adenosine in the microenvironment are the ectonucleotidases CD39 and CD73, the former utilizes both ATP and ADP and produces AMP while the latter utilizes AMP and generates adenosine. Thus, these two enzymes combined are the major source for the bulk of adenosine produced in the microenvironment. They were shown to be validated targets in oncology leading to several clinical trials that include small molecules as well as antibodies, showing positive and encouraging results in the preclinical arena. Towards the development of novel drugs to target these enzymes, we have developed a platform that can be utilized to monitor the activities of both enzymes in vitro (biochemical) as well as in cells (cell based) assays. We have developed very sensitive and homogenous assays that enabled us to monitor the activity of both enzymes and demonstrate selectivity of known inhibitors as well as monoclonal antibodies. This should speed up screening for novel inhibitors that might lead to more effective cancer therapy.
Collapse
Affiliation(s)
- Said A. Goueli
- Department of Cell Signaling, Research and Development, Promega Corp. Madison, WI, United States of America
| | - Kevin Hsiao
- Department of Cell Signaling, Research and Development, Promega Corp. Madison, WI, United States of America
| |
Collapse
|
18
|
Eida AA, Abugrain ME, Brumsted CJ, Mahmud T. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis. Nat Chem Biol 2019; 15:795-802. [PMID: 31308531 PMCID: PMC6642016 DOI: 10.1038/s41589-019-0314-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation is a common modification reaction in natural products biosynthesis and has been known to be a post assembly line tailoring process in glycosylated polyketide biosynthesis. Here, we show that in pactamycin biosynthesis glycosylation can take place on an acyl carrier protein (ACP)-bound polyketide intermediate. Using in vivo gene inactivation, chemical complementation, and in vitro pathway reconstitution we demonstrate that the 3-aminoacetophenone moiety of pactamycin is derived from 3-aminobenzoic acid by a set of discrete polyketide synthase proteins via a 3-[3-aminophenyl]3-oxopropionyl-ACP intermediate. This ACP-bound intermediate is then glycosylated by an N-glycosyltransferase, PtmJ, providing a sugar precursor for the formation of the aminocyclopentitol core structure of pactamycin. This is the first example of glycosylation of a small molecule while tethered to a carrier protein. Additionally, we demonstrate that PtmO is a hydrolase that is responsible for the release of the ACP-bound product to a free β-ketoacid that subsequently undergoes decarboxylation.
Collapse
Affiliation(s)
- Auday A Eida
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Corey J Brumsted
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA. .,Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
19
|
Airhihen B, Pavanello L, Jadhav GP, Fischer PM, Winkler GS. 1-Hydroxy-xanthine derivatives inhibit the human Caf1 nuclease and Caf1-containing nuclease complexes via Mg 2+-dependent binding. FEBS Open Bio 2019; 9:717-727. [PMID: 30984545 PMCID: PMC6443996 DOI: 10.1002/2211-5463.12605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 01/11/2023] Open
Abstract
In eukaryotic cells, cytoplasmic mRNA is characterised by a 3′ poly(A) tail. The shortening and removal of poly(A) tails (deadenylation) by the Ccr4‐Not nuclease complex leads to reduced translational efficiency and RNA degradation. Using recombinant human Caf1 (CNOT7) enzyme as a screening tool, we recently described the discovery and synthesis of a series of substituted 1‐hydroxy‐3,7‐dihydro‐1H‐purine‐2,6‐diones (1‐hydroxy‐xanthines) as inhibitors of the Caf1 catalytic subunit of the Ccr4‐Not complex. Here, we used a chemiluminescence‐based AMP detection assay to show that active 1‐hydroxy‐xanthines inhibit both isolated Caf1 enzyme and human Caf1‐containing complexes that also contain the second nuclease subunit Ccr4 (CNOT6L) to a similar extent, indicating that the active site of the Caf1 nuclease subunit does not undergo substantial conformational change when bound to other Ccr4‐Not subunits. Using differential scanning fluorimetry, we also show that binding of active 1‐hydroxy‐xanthines requires the presence of Mg2+ ions, which are present in the active site of Caf1.
Collapse
Affiliation(s)
- Blessing Airhihen
- School of Pharmacy University of Nottingham UK.,Present address: Department of Pharmacology School of Pharmacy Niger Delta University Wilberforce Island Nigeria
| | - Lorenzo Pavanello
- School of Pharmacy University of Nottingham UK.,Present address: Domainex Ltd Chesterford Research Park Little Chesterford, Saffron Walden, Essex UK
| | - Gopal P Jadhav
- School of Pharmacy Centre for Biomolecular Sciences University of Nottingham UK.,Present address: School of Medicine Department of Clinical & Translational Sciences Creighton University Omaha NE USA
| | - Peter M Fischer
- School of Pharmacy Centre for Biomolecular Sciences University of Nottingham UK
| | | |
Collapse
|
20
|
Genetically Encoded Protein Phosphorylation in Mammalian Cells. Cell Chem Biol 2018; 25:1067-1074.e5. [PMID: 29937407 PMCID: PMC6162345 DOI: 10.1016/j.chembiol.2018.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 05/15/2018] [Indexed: 01/16/2023]
Abstract
Protein phosphorylation regulates diverse processes in eukaryotic cells. Strategies for installing site-specific phosphorylation in target proteins in eukaryotic cells, through routes that are orthogonal to enzymatic post-translational modification, would provide a powerful route for defining the consequences of particular phosphorylations. Here we show that the SepRSv1.0/tRNAv1.0CUA pair (created from the Methanococcus maripaludis phosphoseryl-transfer RNA synthetase [MmSepRS]/Methanococcus janaschii [Mj]tRNAGCACys pair) is orthogonal in mammalian cells. We create a eukaryotic elongation factor 1 alpha (EF-1α) variant, EF-1α-Sep, that enhances phosphoserine incorporation, and combine this with a mutant of eRF1, and manipulations of the cell’s phosphoserine biosynthetic pathway, to enable the genetically encoded incorporation of phosphoserine and its non-hydrolyzable phosphonate analog. Using this approach we demonstrate synthetic activation of a protein kinase in mammalian cells. SepRSv1.0/tRNAv1.0CUA is an orthogonal pair in mammalian cells Phosphoserine is genetically directed into proteins in mammalian cells Phosphonate analog of phosphoserine is stably incorporated in mammalian cells Encoded phosphonate analog enables synthetic kinase activation
Collapse
|