1
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
2
|
Wang Y, Cortes E, Huang R, Wan J, Zhao J, Hinz B, Damoiseaux R, Pushkarsky I. FLECS technology for high-throughput screening of hypercontractile cellular phenotypes in fibrosis: A function-first approach to anti-fibrotic drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100138. [PMID: 38158044 DOI: 10.1016/j.slasd.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The pivotal role of myofibroblast contractility in the pathophysiology of fibrosis is widely recognized, yet HTS approaches are not available to quantify this critically important function in drug discovery. We developed, validated, and scaled-up a HTS platform that quantifies contractile function of primary human lung myofibroblasts upon treatment with pro-fibrotic TGF-β1. With the fully automated assay we screened a library of 40,000 novel small molecules in under 80 h of total assay run-time. We identified 42 hit compounds that inhibited the TGF-β1-induced contractile phenotype of myofibroblasts, and enriched for 19 that specifically target myofibroblasts but not phenotypically related smooth muscle cells. Selected hits were validated in an ex vivo lung tissue models for their inhibitory effects on fibrotic gene upregulation by TGF-β1. Our results demonstrate that integrating a functional contraction test into the drug screening process is key to identify compounds with targeted and diverse activity as potential anti-fibrotic agents.
Collapse
Affiliation(s)
- Yao Wang
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States.
| | - Enrico Cortes
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States
| | - Ricky Huang
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States
| | - Jeremy Wan
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States
| | - Junyi Zhao
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Robert Damoiseaux
- University of California Los Angeles, Los Angeles, CA 90095, United States; California NanoSystems Institute at UCLA, Los Angeles, Los Angeles, CA 90095, United States
| | - Ivan Pushkarsky
- Forcyte Biotechnologies, Inc, Los Angeles, CA 90095, United States
| |
Collapse
|
3
|
Huang J, Lee JZ, Rau CD, Pezhouman A, Yokota T, Miwa H, Feldman M, Kong TK, Yang Z, Tay WT, Pushkarsky I, Kim K, Parikh SS, Udani S, Soh BS, Gao C, Stiles L, Shirihai OS, Knollmann BC, Ardehali R, Di Carlo D, Wang Y. Regulation of Postnatal Cardiomyocyte Maturation by an RNA Splicing Regulator RBFox1. Circulation 2023; 148:1263-1266. [PMID: 37844148 PMCID: PMC10593507 DOI: 10.1161/circulationaha.122.061602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Affiliation(s)
- Jijun Huang
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Josh Z. Lee
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
| | - Christoph D. Rau
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
- Department of Genetics and Computational Medicine, University of North Carolina, Chapel Hill, NC
| | - Arash Pezhouman
- Division of Cardiology, Department of Medicine, UCLA
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Tomohiro Yokota
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
- Division of Cardiology, Department of Medicine, UCLA
- Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA
| | - Hiromi Miwa
- Department of Bioengineering, Samueli School of Engineering, UCLA
| | | | - Tsz Kin Kong
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
| | - Ziyue Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Woan Ting Tay
- Signature Research Program of Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore
| | | | - Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Shan S. Parikh
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Shreya Udani
- Department of Bioengineering, Samueli School of Engineering, UCLA
| | - Boon Seng Soh
- Institute of Molecular and Cell Biology, The Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chen Gao
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, OH
| | - Linsey Stiles
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Orian S. Shirihai
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Bjorn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, UCLA
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Dino Di Carlo
- Department of Bioengineering, Samueli School of Engineering, UCLA
| | - Yibin Wang
- Cardiovascular laboratory, Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine
- Signature Research Program of Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Orfanos S, Jude J, Deeney BT, Cao G, Rastogi D, van Zee M, Pushkarsky I, Munoz HE, Damoiseaux R, Di Carlo D, Panettieri RA. Obesity increases airway smooth muscle responses to contractile agonists. Am J Physiol Lung Cell Mol Physiol 2018; 315:L673-L681. [PMID: 30160518 DOI: 10.1152/ajplung.00459.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The asthma-obesity syndrome represents a major public health concern that disproportionately contributes to asthma severity and induces insensitivity to therapy. To date, no study has shown an intrinsic difference between human airway smooth muscle (HASM) cells derived from nonobese subjects and those derived from obese subjects. The objective of this study was to address whether there is a greater response to agonist-induced calcium mobilization, phosphorylation of myosin light chain (MLC), and greater shortening in HASM cells derived from obese subjects. HASM cells derived from nonobese and obese subjects were age and sex matched. Phosphorylation of MLC was measured after having been stimulated by carbachol. Carbachol- or histamine-induced mobilization of calcium and cell shortening were assessed in HASM cells derived from nonobese and obese donors. Agonist-induced MLC phosphorylation, mobilization of calcium, and cell shortening were greater in obese compared with non-obese-derived HASM cells. The MLC response was comparable in HASM cells derived from obese nonasthma and nonobese fatal asthma subjects. HASM cells derived from obese female subjects were more responsive to carbachol than HASM cells derived from obese male subjects. Insulin pretreatment had little effect on these responses. Our results show an increase in agonist-induced calcium mobilization associated with an increase in MLC phosphorylation and an increase in ASM cell shortening in favor of agonist-induced hyperresponsiveness in HASM cells derived from obese subjects. Our studies suggest that obesity induces a retained phenotype of hyperresponsiveness in cultured human airway smooth muscle cells.
Collapse
Affiliation(s)
- Sarah Orfanos
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, New Jersey
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, New Jersey
| | - Brian T Deeney
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, New Jersey
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, New Jersey
| | - Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Mark van Zee
- Department of Bioengineering, University of California , Los Angeles, California.,California NanoSystems Institute, University of California , Los Angeles, California
| | - Ivan Pushkarsky
- Department of Bioengineering, University of California , Los Angeles, California.,California NanoSystems Institute, University of California , Los Angeles, California.,Department of Mechanical Engineering, University of California , Los Angeles, California
| | - Hector E Munoz
- Department of Bioengineering, University of California , Los Angeles, California
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California , Los Angeles, California
| | - Dino Di Carlo
- Department of Bioengineering, University of California , Los Angeles, California.,California NanoSystems Institute, University of California , Los Angeles, California.,Department of Mechanical Engineering, University of California , Los Angeles, California
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, New Jersey
| |
Collapse
|