1
|
Montegiove N, Leonardi L, Cesaretti A, Pellegrino RM, Pellegrino A, Emiliani C, Calzoni E. Biogenic Amine Content Analysis of Three Chicken-Based Dry Pet Food Formulations. Animals (Basel) 2023; 13:1945. [PMID: 37370455 DOI: 10.3390/ani13121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two. These raw materials are often meat not fit for human consumption; they might be subject to contamination and proliferation of microorganisms which, by degrading the organic component, can lead to the formation of undesirable by-products such as biogenic amines. These nitrogenous compounds obtained by decarboxylation of amino acids can therefore be found in high-protein foods, and their ingestion in large quantities can cause intoxication and be harmful. This study aims at analyzing the possible presence of biogenic amines in three different formulations of chicken-based kibbles for pets: one obtained from fresh meat, one from meat meal, and one from a mix of the two. This study is also focused on the presence of free amino acids as they represent the key substrate for decarboxylating enzymes. Mass spectrometry (Q-TOF LC/MS) was used to analyze the presence of biogenic amines and free amino acids. The results show that fresh-meat-based products have a lower content of biogenic amines, and at the same time a higher quantity of free amino acids; on the contrary, meat-meal- and mix-based products have a greater quantity of biogenic amines and a lower concentration of free amino acids, suggesting that there has been a higher microbial proliferation as proved by the total aerobic mesophilic bacteria counts. It is therefore clear that fresh-meat-based kibbles are to be preferred when they are used for preparing dry pet food due to the lowest concentration of biogenic amines.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
2
|
Jeong J, Fujita KI. Dimethylamination of Primary Alcohols Using a Homogeneous Iridium Catalyst: A Synthetic Method for N, N-Dimethylamine Derivatives. J Org Chem 2021; 86:4053-4060. [PMID: 33606940 DOI: 10.1021/acs.joc.0c02896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new catalytic system for N,N-dimethylamination of primary alcohols using aqueous dimethylamine in the absence of additional organic solvents has been developed. The reaction proceeds via borrowing hydrogen processes, which are atom-efficient and environmentally benign. An iridium catalyst bearing an N-heterocyclic carbene (NHC) ligand exhibited high performance, without showing any deactivation under aqueous conditions. In addition, valuable N,N-dimethylamine derivatives, including biologically active and pharmaceutical molecules, were synthesized. The practical application of this methodology was demonstrated by a gram-scale reaction.
Collapse
Affiliation(s)
- Jaeyoung Jeong
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-Ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Mossoba ME, Mapa MST, Araujo M, Zhao Y, Flannery B, Flynn T, Sprando J, Wiesenfeld P, Sprando RL. Long-term in vitro effects of exposing the human HK-2 proximal tubule cell line to 3-monochloropropane-1,2-diol. J Toxicol Sci 2020; 45:45-56. [PMID: 31932557 DOI: 10.2131/jts.45.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
3-Monochloropropane-1,2-diol (3-MCPD) is a food processing contaminant in the U.S. food supply, detected in infant formula. In vivo rodent model studies have identified a variety of possible adverse outcomes from 3-MCPD exposure including renal effects like increased kidney weights, tubular hyperplasia, kidney tubular necrosis, and chronic progressive nephropathy. Given the lack of available in vivo toxicological assessments of 3-MCPD in humans and the limited availability of in vitro human cell studies, the health effects of 3-MCPD remain unclear. We used in vitro human proximal tubule cells represented by the HK-2 cell line to compare short- and long-term consequences to continuous exposure to this compound. After periodic lengths of exposure (0-100 mM) ranging from 1 to 16 days, we evaluated cell viability, mitochondrial integrity, oxidative stress, and a specific biomarker of proximal tubule injury, Kidney Injury Molecule-1 (KIM-1). Overall, we found that free 3-MCPD was generally more toxic at high concentrations or extended durations of exposure, but that its overall ability to induce cell injury was limited in this in vitro system. Further experiments will be needed to conduct a comprehensive safety assessment in infants who may be exposed to 3-MCPD through consumption of infant formula, as human renal physiology changes significantly during development.
Collapse
Affiliation(s)
- Miriam E Mossoba
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Mapa S T Mapa
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Magali Araujo
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Yang Zhao
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Brenna Flannery
- U.S. FDA, CFSAN, Office of Analytics and Outreach (OAO), Division of Risk and Decision Analysis (DRDA), Contaminant Assessment Branch (CAB), USA
| | - Thomas Flynn
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | | | - Paddy Wiesenfeld
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| | - Robert L Sprando
- U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Applied Regulatory Toxicology (DART), Neurotoxicology and In vitro Toxicology Branch (NIVTB), USA
| |
Collapse
|
4
|
Mossoba ME, Sprando RL. In Vitro to In Vivo Concordance of Toxicity Using the Human Proximal Tubule Cell Line HK-2. Int J Toxicol 2020; 39:452-464. [PMID: 32723106 DOI: 10.1177/1091581820942534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The renal proximal tubule cell line, human kidney 2 (HK-2), recapitulates many of the functional cellular and molecular characteristics of differentiated primary proximal tubule cells. These features include anchorage dependence, gluconeogenesis capability, and sodium-dependent sugar transport. In order to ascertain how well HK-2 cells can reliably reveal the toxicological profile of compounds having a potential to cause proximal tubule injury in vivo, we sought to evaluate the effects of known proximal tubule toxicants using the HK-2 cell line. We selected 20 pure nephrotoxic compounds that included chemotherapeutic drugs, antibiotics, and heavy metal-containing compounds and evaluated their ability to induce HK-2 cell injury relative to 10 innocuous pure compounds or cell culture media alone. We performed a comprehensive set of in vitro cellular toxicological assays to evaluate cell viability, oxidative stress, mitochondrial integrity, and a specific biomarker of renal injury, Kidney Injury Molecule 1. For each of our selected compounds, we were able to establish a reproducible profile of toxicological outcomes. We compared our results to those described in peer-reviewed publications to understand how well the HK-2 cellular model agrees with overall in vivo rat or human toxicological outcomes. This study begins to address the question of how well in vitro data generated with HK-2 cells can mirror in vivo animal and human outcomes.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, 4137US Food and Drug Administration, Laurel, MD, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, 4137US Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
5
|
Mossoba ME, Vohra SN, Bigley E, Sprando J, Wiesenfeld PL. Genetically Engineered Human Kidney Cells for Real-Time Cytotoxicity Testing In Vitro. Mol Biotechnol 2020; 62:252-259. [PMID: 32146690 DOI: 10.1007/s12033-020-00245-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classic toxicology studies often utilize in vivo animal models. Newer approaches employing in vitro organ-specific cellular models have been developed in recent years to help accelerate the speed and reduce the cost of traditional toxicology testing. Toward the goal of supporting in vitro cellular model research with a regulatory application in mind, we have developed a 'designer' human kidney cell line called HK2-Vi that can fluorescently measure the cytotoxicity of potential toxins on proximal tubule cell viability in a direct exposure in vitro model. HK2-Vi was designed to be a reagent-less kinetic assay that can yield data on short- or long-term cell viability after toxin exposure. To generate HK2-Vi, we used monocistronic lentiviral transduction methods to genetically engineer a human kidney cell line called HK-2 to stably co-express two transgenes. The first is Perceval HR, which encodes a fluorescent biosensor of both cytosolic ATP and ADP and the second is pHRed, which encodes a biosensor of cytosolic pH. Relative levels of cellular ATP and ADP effectively serve as a reliable and robust indicator of cell viability. Because the fluorescence Perceval HR is pH-dependent, we co-expressed the pHRed genetic biosensor to correct for variations in pH if necessary. Heterogenous populations of transduced renal cells were enriched by flow cytometry before monoclonal cellular populations were isolated by cell culture methods. A single clonal population of co-transduced cells expressing both Perceval HR and pHRed was selected to be HK2-Vi. This established cell line can now serve as a tool for in vitro toxicology testing and the methods described herein serve as a model for developing designer cell lines derived from other organs.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Neurotoxicology and In Vitro Toxicology Branch (NIVTB), Division of Applied Regulatory Toxicology (DART), Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), Laurel, MD, USA.
| | - Sanah N Vohra
- Neurotoxicology and In Vitro Toxicology Branch (NIVTB), Division of Applied Regulatory Toxicology (DART), Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), Laurel, MD, USA
| | - Elmer Bigley
- Immunobiology Branch (IB), Division of Virulence Assessment (DVA), Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), Laurel, MD, USA
| | - Jessica Sprando
- Neurotoxicology and In Vitro Toxicology Branch (NIVTB), Division of Applied Regulatory Toxicology (DART), Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), Laurel, MD, USA
| | - Paddy L Wiesenfeld
- Neurotoxicology and In Vitro Toxicology Branch (NIVTB), Division of Applied Regulatory Toxicology (DART), Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), Laurel, MD, USA
| |
Collapse
|
6
|
In vitro toxicological assessment of free 3-MCPD and select 3-MCPD esters on human proximal tubule HK-2 cells. Cell Biol Toxicol 2019; 36:209-221. [PMID: 31686351 DOI: 10.1007/s10565-019-09498-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Chloropropanols are chemical contaminants that can be formed during industrial processing of foods, such as lipids used in commercially available infant and toddler formula in the USA. Many researchers have studied the most common chloropropanol contaminant, 3-monochloropropane-1,2-diol (3-MCPD), as well as its lipid ester derivatives. A plethora of toxicological outcomes have been described in vivo, including effects on the heart, nervous system, reproductive organs, and kidneys. To better understand the concordance of some of these effects to in vitro outcomes, we focused our research on using an in vitro cellular model to investigate whether the proximal tubule cells of the kidney would be vulnerable to the effects of free 3-MCPD and nine of its common esters in commercial formula. Using the established human kidney proximal tubule cell line, HK-2, we performed 24-h treatments using 3-MCPD and nine mono- or di-esters derived from palmitate, oleate, and linoleate. By directly exposing HK-2 cells at treatment doses ranging from 0 to 100 μM, we could evaluate their effects on cell viability, mitochondrial health, reactive oxygen species (ROS) production, and other endpoints of toxicity. Since chloropropanols reportedly inhibit cellular metabolism through interference with glycolysis, we also tested the extent of this mechanism. Overall, we found mild but statistically significant evidence of cytotoxicity at the highest tested treatment concentrations, which were also associated with mitochondrial dysfunction and transient perturbations in cellular metabolism. Based on these findings, further studies will be required to better understand the effects of these compounds under conditions that are more physiologically relevant to human infant and toddler proximal tubules in order to mimic their exposure to chloropropanol-containing foods.
Collapse
|