1
|
Wang R, Guo Y, Li L, Luo M, Peng L, Lv D, Cheng Z, Xue Q, Wang L, Huang J. Role of thioredoxin-interacting protein in mediating endothelial dysfunction in hypertension. Genes Dis 2022; 9:753-765. [PMID: 35782967 PMCID: PMC9243351 DOI: 10.1016/j.gendis.2020.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Abstract
Excessive oxidative stress is a major causative factor of endothelial dysfunction in hypertension. As an endogenous pro-oxidant, thioredoxin-interacting protein (TXNIP) contributes to oxidative damage in various tissues. The present study aimed to investigate the role of TXNIP in mediating endothelial dysfunction in hypertension. In vivo, an experimental model of acquired hypertension was established with two-kidney, one-clip (2K1C) surgery. The expression of TXNIP in the vascular endothelial cells of multiple vessels was significantly increased in hypertensive rats compared with sham-operated rats. Resveratrol, a TXNIP inhibitor, suppressed vascular oxidative damage and increased the expression and activity of eNOS in the aorta of hypertensive rats. Notably, impaired endothelium-dependent vasodilation was effectively improved by TXNIP inhibition in hypertensive rats. In vitro, we observed that Ang II increased the expression of TXNIP in primary human aortic endothelial cells (HAECs) and that TXNIP knockdown by RNA interference alleviated cellular oxidative stress damage and mitigated the impaired eNOS activation and intracellular nitric oxide (NO) production observed in Ang II-treated HAECs. However, inhibiting thioredoxin (TRX) with PX-12 completely blunted the protective effect of silencing TXNIP. In addition, TXNIP knockdown facilitated TRX expression and promoted TRX nuclear translocation to further activate AP1 and REF1. TRX overexpression exhibited favorable effects on eNOS/NO homeostasis in Ang II-treated HAECs. Thus, TXNIP contributes to oxidative stress and endothelial dysfunction in hypertension, and these effects are dependent on the antioxidant capacity of TRX, suggesting that targeting TXNIP may be a novel strategy for antihypertensive therapy.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lingjiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Linqian Peng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xue
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liang Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
2
|
Wang S, Tan X, Chen P, Zheng S, Ren H, Cai J, Zhou L, Jose PA, Yang J, Zeng C. Role of Thioredoxin 1 in Impaired Renal Sodium Excretion of hD 5 R F173L Transgenic Mice. J Am Heart Assoc 2019; 8:e012192. [PMID: 30957627 PMCID: PMC6507211 DOI: 10.1161/jaha.119.012192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Background Dopamine D5 receptor (D5R) plays an important role in the maintenance of blood pressure by regulating renal sodium transport. Our previous study found that human D5R mutant F173L transgenic ( hD 5 R F173L-TG) mice are hypertensive. In the present study, we aimed to investigate the mechanisms causing this renal D5R dysfunction in hD 5 R F173L-TG mice. Methods and Results Compared with wild-type D5R-TG ( hD 5 R WT-TG) mice, hD 5 R F173L-TG mice have higher blood pressure, lower basal urine flow and sodium excretion, and impaired agonist-mediated natriuresis and diuresis. Enhanced reactive oxygen species production in hD 5 R F173L-TG mice is caused, in part, by decreased expression of antioxidant enzymes, including thioredoxin 1 (Trx1). Na+-K+-ATPase activity is increased in mouse renal proximal tubule cells transfected with hD 5 R F173L, but is normalized by treatment with exogenous recombinant human Trx1 protein. Regulation of Trx1 by D5R occurs by the phospholipase C/ protein kinase C (PKC) pathway because upregulation of Trx1 expression by D5R does not occur in renal proximal tubule cells from D1R knockout mice in the presence of a phospholipase C or PKC inhibitor. Fenoldopam, a D1R and D5R agonist, stimulates PKC activity in primary renal proximal tubule cells of hD5R WT -TG mice, but not in those of hD 5 R F173L-TG mice. Hyperphosphorylation of hD5RF173L and its dissociation from Gαs and Gαq are associated with impairment of D5R-mediated inhibition of Na+-K+-ATPase activity in hD 5 R F173L-TG mice. Conclusions These suggest that hD 5 R F173L increases blood pressure, in part, by decreasing renal Trx1 expression and increasing reactive oxygen species production. Hyperphosphorylation of hD5RF173L, with its dissociation from Gαs and Gαq, is the key factor in impaired D5R function of hD 5 R F173L-TG mice.
Collapse
Affiliation(s)
- Shaoxiong Wang
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Xiaorong Tan
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Peng Chen
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Shuo Zheng
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Hongmei Ren
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Jin Cai
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Lin Zhou
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| | - Pedro A. Jose
- Division of Renal Disease & HypertensionDepartments of Medicine and Pharmacology/PhysiologyThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Jian Yang
- Department of Clinical NutritionThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingP.R. China
| | - Chunyu Zeng
- Department of CardiologyDaping HospitalArmy Medical University of PLAChongqingP.R. China
| |
Collapse
|
3
|
miR-125a Suppresses TrxR1 Expression and Is Involved in H 2O 2-Induced Oxidative Stress in Endothelial Cells. J Immunol Res 2018; 2018:6140320. [PMID: 30225271 PMCID: PMC6129346 DOI: 10.1155/2018/6140320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/24/2018] [Accepted: 06/10/2018] [Indexed: 02/07/2023] Open
Abstract
Thioredoxin reductase (TrxR), an antioxidant enzyme dependent on nicotinamide adenine dinucleotide phosphate, plays a vital role in defense against oxidative stress. However, the role of microRNAs targeting TrxR under oxidative stress has not yet been determined. In this study, we tested the involvement of miRNA-mediated posttranscriptional regulation in H2O2-induced TrxR1 expression in endothelial cells. Dual luciferase assay combined with expression analysis confirmed that miR-125a suppressed TrxR1 expression by targeting its 3′-UTR. Furthermore, H2O2 induced TrxR1 expression partly through downregulation of miR-125a. These findings indicate that miRNA-mediated posttranscriptional mechanism is involved in H2O2-induced TrxR1 expression in endothelial cells, suggesting an important role of miRNAs in the response to oxidative stress.
Collapse
|
4
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
5
|
Martinez-Hervas S, Artero A, Martinez-Ibañez J, Tormos MC, Gonzalez-Navarro H, Priego A, Martinez-Valls JF, Saez GT, Real JT, Carmena R, Ascaso JF. Increased thioredoxin levels are related to insulin resistance in familial combined hyperlipidaemia. Eur J Clin Invest 2016; 46:636-42. [PMID: 27208733 DOI: 10.1111/eci.12642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thioredoxins (TRX) are major cellular protein disulphide reductases that are critical for redox regulation. Oxidative stress and inflammation play promoting roles in the genesis and progression of atherosclerosis, but until now scarce data are available considering the influence of TRX activity in familial combined hyperlipidaemia (FCH). Since FCH is associated with high risk of cardiovascular disease, the objective of the present study was to assess oxidative stress status in FCH patients, and evaluate the influence of insulin resistance (IR). MATERIALS AND METHODS A cohort of 35 control subjects and 35 non-related FCH patients were included, all of them nondiabetic, normotensive and nonsmokers. We measured lipid profile, glucose and insulin levels in plasma, and markers of oxidative stress and inflammation such as oxidized glutathione (GSSG), reduced glutathione (GSH) and TRX. RESULTS Familial combined hyperlipidaemia subjects showed significantly higher levels of GSSG, GSSG/GSH ratio and TRX than controls. In addition, FCH individuals with IR showed the worst profile of oxidative stress status compared to controls and FCH patients without IR (P < 0·01). TRX levels correlated with higher insulin resistance. CONCLUSION Familial combined hyperlipidaemia patients showed increased TRX levels. TRX was positively correlated with IR. These data could partially explain the increased risk of cardiovascular events in primary dyslipidemic patients.
Collapse
Affiliation(s)
- Sergio Martinez-Hervas
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Ana Artero
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain
| | - Juncal Martinez-Ibañez
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain
| | | | - Herminia Gonzalez-Navarro
- CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain.,Institute of Health Research-INCLIVA, Valencia, Spain
| | - Antonia Priego
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Jose F Martinez-Valls
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Guillermo T Saez
- Department of Biochemistry and Molecular Biology, University of Valencia-INCLIVA, Valencia, Spain.,Service of Clinical Analysis, Dr. Peset University Hospital, Valencia, Spain
| | - Jose T Real
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Rafael Carmena
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| | - Juan F Ascaso
- Service of Endocrinology and Nutrition, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBERDEM, Biomedical Network Research Centre in Diabetes and Metabolic Related Diseases, Madrid, Spain
| |
Collapse
|
6
|
Mansego ML, De Marco G, Ivorra C, Lopez-Izquierdo R, Morcillo S, Rojo-Martínez G, González-Albert V, Martinez F, Soriguer F, Martín-Escudero JC, Redon J, Chaves FJ. The nutrigenetic influence of the interaction between dietary vitamin E and TXN and COMT gene polymorphisms on waist circumference: a case control study. J Transl Med 2015; 13:286. [PMID: 26329592 PMCID: PMC4557824 DOI: 10.1186/s12967-015-0652-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/25/2015] [Indexed: 03/21/2023] Open
Abstract
Background Abdominal obesity (AO) is a common modifiable risk factor for certain non-communicable diseases associated with enhanced oxidative stress (OS). The objective of this work was to investigate whether the interaction between antioxidant vitamin intake and OS-related polymorphisms modulates gene-associated anthropometry in a Spanish population. Methods A total of 246 subjects with AO, and 492 age and gender matched non-AO subjects were included in the study. Anthropometric, biochemical, and OS parameters, and antioxidant dietary intake data were assessed using validated procedures. DNA from white blood cells was isolated and the genotype of seven polymorphisms from genes
involved in OS (pro-oxidant and antioxidant) were analyzed using the SNPlex system. The effects of the c.-793T > C polymorphism on promoter activity and thus thioredoxin (TXN) activity were examined using reporter assays. Results The AO group had higher 8-Oxo-2′-deoxyguanosine levels and took in less vitamin A and vitamin E compared to the non-AO group. Logistic regression analysis revealed that the rs2301241 polymorphism in TXN and rs740603 in catechol-O-methyltransferase (COMT) were associated with waist circumference (WC) and AO. Moreover, these polymorphisms were more strongly associated with variations in WC in subjects with low vitamin E intakes. A promoter assay revealed that the T to C conversion at c.-793 (rs2301241) induced a more than two fold increase in reporter gene expression. Conclusions WC is associated both with dietary vitamin E intake and genetic variants of TXN and COMT suggesting that existence of a complex nutrigenetic pathway that involves regulation of AO. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0652-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria L Mansego
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, CB06/03, Institute of Health Carlos III, c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Genotyping and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia-INCLIVA, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| | - Griselda De Marco
- Genotyping and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia-INCLIVA, Av. Blasco Ibañez 17, 46010, Valencia, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), c/Sinesio Delgado 6, 28029, Madrid, Spain.
| | - Carmen Ivorra
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, CB06/03, Institute of Health Carlos III, c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Cardiovascular Risk Unit, Consorcio, Hospital General, University of Valencia, Av. Tres Cruces 2, 46014, Valencia, Spain.
| | - Raúl Lopez-Izquierdo
- Internal Medicine Unit, Rio Hortega Hospital, c/Dulzaina 2, 47012, Valladolid, Spain.
| | - Sonsoles Morcillo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Endocrinology and Nutrition Department, Carlos Haya University Hospital and Instituto de Investigación Biomédica de Málaga (IBIMA), c/Jorge Luis Borges 15, 29010, Málaga, Spain.
| | - Gemma Rojo-Martínez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Endocrinology and Nutrition Department, Carlos Haya University Hospital and Instituto de Investigación Biomédica de Málaga (IBIMA), c/Jorge Luis Borges 15, 29010, Málaga, Spain.
| | - Verónica González-Albert
- Genotyping and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia-INCLIVA, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| | - Fernando Martinez
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, CB06/03, Institute of Health Carlos III, c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Hypertension Clinic, Hospital Clínico Universitario de Valencia, Av. Blasco Ibañez 15, 46010, Valencia, Spain.
| | - Federico Soriguer
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Endocrinology and Nutrition Department, Carlos Haya University Hospital and Instituto de Investigación Biomédica de Málaga (IBIMA), c/Jorge Luis Borges 15, 29010, Málaga, Spain.
| | | | - Josep Redon
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, CB06/03, Institute of Health Carlos III, c/Sinesio Delgado 6, 28029, Madrid, Spain. .,Hypertension Clinic, Hospital Clínico Universitario de Valencia, Av. Blasco Ibañez 15, 46010, Valencia, Spain.
| | - F Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia-INCLIVA, Av. Blasco Ibañez 17, 46010, Valencia, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), c/Sinesio Delgado 6, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Guo Q, Wang Y, Li QY, Li M, Wan HY. Levels of thioredoxin are related to the severity of obstructive sleep apnea: based on oxidative stress concept. Sleep Breath 2012; 17:311-6. [DOI: 10.1007/s11325-012-0692-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/16/2012] [Accepted: 03/08/2012] [Indexed: 12/19/2022]
|
8
|
Abstract
OBJECTIVE To assess the association of single-nucleotide polymorphisms (SNPs) in genes codifying for antioxidant enzymes to blood pressure (BP) values and risk of hypertension. METHODS Population-based study including 1388 participants (704 women) older than 18 years in which 300 were untreated hypertensive patients. In 335 untreated hypertensive patients referred to one hypertension clinic, the study was replicated. Thirty-five SNP throughout 13 genes were analyzed using SNPlex. In a subgroup of hypertensive patients, the amount of 8-oxo-deoxyguanosine and GPX activity levels was measured in mononuclear cells. RESULTS In the general population, genotypes with the G allele of the c.172G>A polymorphism in the SOD3 gene and those with the T allele of the c.-20C>T polymorphism in the CAT gene were associated with significant lower values of BP. Likewise, these genotypes were associated with less risk for hypertension after adjusting for confounder variables. Haplotypes in both genes increased the strength of associations. In the hypertensive patients, the same alleles of the two polymorphisms were associated with lower BP values too. In addition, two others, the CT-TT genotypes of the c.891C>T polymorphism in the GPX1 gene and the CT-CC genotypes of the c.-793T>C polymorphism of the TXN gene were also significantly associated to lower BP values. Furthermore, the CC genotype of the c.891C>T polymorphism in the GPX1 gene was associated with higher values of 8-oxo-dG and GPX activity levels as compared to those for the CT-TT genotype. CONCLUSIONS The results of the present study support the influence of antioxidant enzyme genes in BP values and hypertension risk.
Collapse
|
9
|
Fandos M, Corella D, Guillén M, Portolés O, Carrasco P, Iradi A, Martínez-González MA, Estruch R, Covas MI, Lamuela-Raventós RM, Michavilla MT, Cerdá C, Torregrosa R, Redón J, Chaves FF, Tormos MC, Ocete D, Sáez GT. Impact of cardiovascular risk factors on oxidative stress and DNA damage in a high risk Mediterranean population. Free Radic Res 2010; 43:1179-86. [PMID: 19905980 DOI: 10.3109/10715760903247231] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The impact of classic cardiovascular risk factors on oxidative stress status in a high-risk cardiovascular Mediterranean population of 527 subjects was estimated. Oxidative stress markers (malondialdehyde, 8-oxo-7'8'-dihydro-2'-deoxyguanosine, oxidized/reduced glutathione ratio) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) were analysed in circulating mononuclear blood cells. Malondialdehyde, oxidized glutathione and the ratio of oxidized to reduced glutathione were significantly higher while catalase and glutathione peroxidase activities were significantly lower in high cardiovascular risk participants than in controls. Statistically significant differences were obtained after additional multivariate control for sex, age, obesity, diabetes, lipids and medications. Among the main cardiovascular risk factors, hypertension was the strongest determinant of oxidative stress in high risk subjects studied at a primary prevention stage.
Collapse
Affiliation(s)
- Marta Fandos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Oxidative stress plays an important role in the pathogenesis of hypertension. A number of sources of reactive oxygen species have been identified including NADPH oxidase, endothelial NO synthase, and xanthine oxidase. Inhibitors of these systems reduce blood pressure in experimental models. Targeted overexpression of antioxidant systems and interference with expression of oxidant systems has also been successfully used in animal models of hypertension. It is expected that these strategies will eventually be translated to human disease, but currently, the specificity and toxicity of such measures are not yet fulfilling quality criteria for treatment of humans. In the meantime, presumably nontoxic measures, such as administration of antioxidant vitamins, are the only available treatments for oxidative stress in humans. In this review, we discuss strategies to target oxidative stress both in experimental models and in humans. We also discuss how patients could be selected who particularly benefit from antioxidant treatment. In clinical practice, diagnostic procedures beyond measurement of blood pressure will be necessary to predict the response to antioxidants; these procedures will include measurement of antioxidant status and detailed assessment of vascular structure and function.
Collapse
Affiliation(s)
- Christian Delles
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | | | | |
Collapse
|
11
|
Abstract
The thioredoxin (TRX) system consists of TRX, TRX reductase, and NAD(P)H, and is able to reduce reactive oxygen species (ROS) through interactions with the redox-active center of TRX, which in turn can be reduced by TRX reductase in the presence of NAD(P)H. Among the TRX superfamily is peroxiredoxin (PRX), a family of non-heme peroxidases that catalyzes the reduction of hydroperoxides into water and alcohol. The TRX system is active in the vessel wall and functions either as an important endogenous antioxidant or interacts directly with signaling molecules to influence cell growth, apoptosis, and inflammation. Recent evidence implicates TRX in cardiovascular disease associated with oxidative stress, such as cardiac failure, arrhythmia, ischemia reperfusion injury, and hypertension. Thioredoxin activity is influenced by many mechanisms, including transcription, protein-protein interaction, and post-translational modification. Regulation of TRX in hypertensive models seems to be related to oxidative stress and is tissue- and cell-specific. Depending on the models of hypertension, TRX system could be upregulated or downregulated. The present review focuses on the role of TRX in vascular biology, describing its redox activities and biological properties in the media and endothelium of the vessel wall. In addition, the pathopysiological role of TRX in hypertension and other cardiovascular diseases is addressed.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Hypertension and Vascular Research Unit, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|