1
|
Zhang Z, Li Z, Peng Y, Li Z, Xv N, Jin L, Cao Y, Jiang C, Chen Z. TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury. Exp Neurol 2024; 381:114916. [PMID: 39122166 DOI: 10.1016/j.expneurol.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopaedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230002, China
| | - Ying Peng
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Zhuoxuan Li
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Nixi Xv
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lixia Jin
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanwu Cao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixian Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Gong X, He S, Cai P. Roles of TRIM21/Ro52 in connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1435525. [PMID: 39165359 PMCID: PMC11333224 DOI: 10.3389/fimmu.2024.1435525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple factors contribute to the development of connective tissue diseases (CTD), often alongside a range of interstitial lung diseases (ILD), including Sjögren's syndrome-associated ILD, systemic sclerosis-associated ILD, systemic lupus erythematosus-associated ILD, idiopathic inflammatory myositis-associated ILD. TRIM21(or Ro52), an E3 ubiquitin ligase, plays a vital role in managing innate and adaptive immunity, and maintaining cellular homeostasis, and is a focal target for autoantibodies in various rheumatic autoimmune diseases. However, the effectiveness of anti-TRIM21 antibodies in diagnosing CTD remains a matter of debate because of their non-specific nature. Recent studies indicate that TRIM21 and its autoantibody are involved in the pathogenesis of CTD-ILD and play an important role in diagnosis and prognosis. In this review, we focus on the contribution of TRIM21 in the pathogenesis of CTD-ILD, as well as the potential diagnostic value of its autoantibodies in different types of CTD-ILD for disease progression and potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Lemos CN, da Silva LECM, Faustino JF, Fantucci MZ, Murashima ADAB, Adriano L, Alves M, Rocha EM. Oxidative Stress in the Protection and Injury of the Lacrimal Gland and the Ocular Surface: are There Perspectives for Therapeutics? Front Cell Dev Biol 2022; 10:824726. [PMID: 35359431 PMCID: PMC8963457 DOI: 10.3389/fcell.2022.824726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress (OS) is a major disruption in the physiology of the lacrimal functional unit (LFU). Antioxidant enzymes have dual protective activities: antioxidant and antimicrobial activities. Peroxidases have been indistinctly used as markers of the secretory activity of the LFU and implicated in the pathophysiology, diagnosis and treatment of dry eye disease (DED), even though they comprise a large family of enzymes that includes lactoperoxidase (LPO) and glutathione peroxidase (GPO), among others. Assays to measure and correlate OS with other local LFU phenomena have methodological limitations. Studies implicate molecules and reactions involved in OS as markers of homeostasis, and other studies identify them as part of the physiopathology of diseases. Despite these conflicting concepts and observations, it is clear that OS is influential in the development of DED. Moreover, many antioxidant strategies have been proposed for its treatment, including calorie restriction to nutritional supplementation. This review offers a critical analysis of the biological mechanisms, diagnostic outcomes, drug use, dietary supplements, and life habits that implicate the influence of OS on DED.
Collapse
Affiliation(s)
- Camila Nunes Lemos
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- *Correspondence: Camila Nunes Lemos,
| | - Lilian Eslaine Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jacqueline Ferreira Faustino
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leidiane Adriano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Zhang JR, Li XX, Hu WN, Li CY. Emerging Role of TRIM Family Proteins in Cardiovascular Disease. Cardiology 2020; 145:390-400. [PMID: 32305978 DOI: 10.1159/000506150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022]
Abstract
Ubiquitination is one of the basic mechanisms of cell protein homeostasis and degradation and is accomplished by 3 enzymes, E1, E2, and E3. Tripartite motif-containing proteins (TRIMs) constitute the largest subfamily of RING E3 ligases, with >70 current members in humans and mice. These members are involved in multiple biological processes, including growth, differentiation, and apoptosis as well as disease and tumorigenesis. Accumulating evidence has shown that many TRIM proteins are associated with various cardiac processes and pathologies, such as heart development, signal transduction, protein degradation, autophagy mediation, ion channel regulation, congenital heart disease, and cardiomyopathies. In this review, we provide an overview of the TRIM family and discuss its involvement in the regulation of cardiac proteostasis and pathophysiology and its potential therapeutic implications.
Collapse
Affiliation(s)
- Jing-Rui Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin-Xin Li
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan, China
| | - Wan-Ning Hu
- Department of Cardiology, Laboratory of Molecular Biology, Tangshan Gongren Hospital, Tangshan, China,
| | - Chang-Yi Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, Laboratory of Molecular Biology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
5
|
Rocha EM, Cotrim AP, Zheng C, Riveros PP, Baum BJ, Chiorini JA. Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice. Hum Gene Ther 2014; 24:417-23. [PMID: 23402345 DOI: 10.1089/hum.2012.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.
Collapse
Affiliation(s)
- Eduardo M Rocha
- Department of Ophthalmology, Otorhinolaringology and Head & Neck Surgery, Faculty of Medicine of Ribeirão Preto, São Paulo University, Ribeirao Preto 14049900, Brazil.
| | | | | | | | | | | |
Collapse
|
6
|
Dickinson D, DeRossi S, Yu H, Thomas C, Kragor C, Paquin B, Hahn E, Ohno S, Yamamoto T, Hsu S. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells. Autoimmunity 2014; 47:177-84. [PMID: 24444391 DOI: 10.3109/08916934.2013.879470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sjogren's syndrome (SS) and type-1 diabetes are prevalent autoimmune diseases in the USA. We reported previously that epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in non-obese diabetic (NOD) mice, a model for both SS and type-1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and anti-oxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of anti-oxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major anti-oxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these anti-oxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting that the EGCG-mediated increase in protective anti-oxidant capacity is regulated in part through mitogen-activated protein kinase pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress.
Collapse
|
7
|
Saito K, Mori S, Date F, Ono M. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Faslprmice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity 2014; 47:13-22. [DOI: 10.3109/08916934.2013.850079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Oke V, Wahren-Herlenius M. Cutaneous lupus erythematosus: clinical aspects and molecular pathogenesis. J Intern Med 2013; 273:544-54. [PMID: 23464352 DOI: 10.1111/joim.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupus erythematosus (LE) is an autoimmune disease with diverse clinical manifestations ranging from limited cutaneous (CLE) to potentially life-threatening systemic disease (SLE). Susceptibility to LE arises from genetic variation in multiple loci, and disease activity is provoked by exogenous or endogenous trigger(s), the best characterized of which is exposure to ultraviolet radiation (UVR). Amongst patients with LE, a cluster of photosensitive subjects with cutaneous lesions and positivity for anti-Ro/SSA autoantibodies have been described. The Ro52 antigen belongs to the tripartite motif protein family and has E3 ligase activity. New data reveal that Ro52 ubiquitinates interferon regulatory factors and modulates their transcriptional activity, indicating an important role for Ro52 in inflammation as a negative feedback regulator. Our findings indicate that UVR exposure induces upregulation of Ro52 in the CLE target cell, the keratinocyte, and that Ro52 is upregulated in spontaneous and UVR-induced CLE lesions. Recently described functional analysis of Ro52-deficient mice revealed that loss of Ro52 results in uncontrolled inflammation in response to minor skin injury leading to an LE-like condition. In summary, emerging data suggest that abnormal function or regulation of Ro52 contributes to the pathogenesis of UVR-induced CLE in genetically susceptible individuals. Ro52 may thus be an interesting therapeutic target, as its activation could contribute to downregulation of the chronic inflammatory process in LE. Here, we review the available data on the pathogenesis of CLE and, in particular, the role of the Ro52 autoantigen.
Collapse
Affiliation(s)
- V Oke
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | | |
Collapse
|
9
|
Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity: A critical review. J Autoimmun 2012; 39:77-82. [DOI: 10.1016/j.jaut.2012.01.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 01/22/2012] [Indexed: 12/20/2022]
|
10
|
Jauharoh SNA, Saegusa J, Sugimoto T, Ardianto B, Kasagi S, Sugiyama D, Kurimoto C, Tokuno O, Nakamachi Y, Kumagai S, Kawano S. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production. Biochem Biophys Res Commun 2011; 417:582-7. [PMID: 22178074 DOI: 10.1016/j.bbrc.2011.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022]
Abstract
SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren's syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52's role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52(low) HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H(2)O(2)- or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.
Collapse
Affiliation(s)
- Siti Nur Aisyah Jauharoh
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oke V, Vassilaki I, Espinosa A, Strandberg L, Kuchroo VK, Nyberg F, Wahren-Herlenius M. High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J Invest Dermatol 2009; 129:2000-10. [PMID: 19194477 DOI: 10.1038/jid.2008.453] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ro52 is an E3 ubiquitin ligase with a recently identified regulatory role in inflammation. The protein is targeted by autoantibodies in rheumatic diseases, and Ro52 autoantibodies are specifically associated with cutaneous lupus erythematosus (CLE) and photosensitivity. The aim of this study was to investigate cutaneous Ro52 expression in CLE patients and to examine whether UVR might modulate Ro52. Ro52 expression was assessed by immunohistochemistry in biopsies derived from CLE lesions (n=25), nonlesional (n=7), and healthy control skin using four anti-Ro52 mAbs generated by us. Ro52 expression was also analyzed in psoriatic, lichenoid, and eczematous lesions. It was increased in the epidermis of spontaneous CLE lesions as compared with unaffected skin of patients and healthy controls. High epidermal Ro52 expression was also observed in other inflammatory dermatoses investigated. Ro52 was upregulated in experimentally photoprovoked CLE lesions as observed by immunohistochemistry in sequential biopsies, which was confirmed in vitro both at the mRNA and protein levels by exposing cultured patient-derived primary keratinocytes to UVR. In conclusion, Ro52 expression is upregulated in keratinocytes in inflammatory skin conditions and in response to UVR. High Ro52 expression might lead to the breaking of tolerance and the generation of Ro52 autoantibodies in genetically susceptible subjects. Further, the upregulation of Ro52 in keratinocytes after sun exposure might also be a triggering factor for skin lesions in patients with Ro52 antibodies.
Collapse
Affiliation(s)
- Vilija Oke
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|