1
|
Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, Munasinghe JP, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC. 13C-MR Spectroscopic Imaging with Hyperpolarized [1-13C]pyruvate Detects Early Response to Radiotherapy in SCC Tumors and HT-29 Tumors. Clin Cancer Res 2015; 21:5073-81. [PMID: 25673698 DOI: 10.1158/1078-0432.ccr-14-1717] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/24/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE X-ray irradiation of tumors causes diverse effects on the tumor microenvironment, including metabolism. Recent developments of hyperpolarized (13)C-MRI enabled detecting metabolic changes in tumors using a tracer [1-(13)C]pyruvate, which participates in important bioenergetic processes that are altered in cancers. Here, we investigated the effects of X-ray irradiation on pyruvate metabolism in squamous cell carcinoma (SCCVII) and colon cancer (HT-29) using hyperpolarized (13)C-MRI. EXPERIMENTAL DESIGN SCCVII and HT-29 tumors were grown by injecting tumor cells into the hind legs of mice. [1-(13)C]pyruvate was hyperpolarized and injected intravenously into tumor-bearing mice, and (13)C-MR signals were acquired using a 4.7 T scanner. RESULTS [1-(13)C]pyruvate and [1-(13)C]lactate were detected in the tumor-bearing legs immediately after hyperpolarized [1-(13)C]pyruvate administration. The [1-(13)C]lactate to [1-(13)C]pyruvate ratio (Lac/Pyr) increased as the tumors grew in nonirradiated SCCVII tumors. The increase in Lac/Pyr was suppressed modestly with a single 10 Gy of irradiation, but it significantly decreased by further irradiation (10 Gy × 3). Similar results were obtained in HT-29; Lac/Pyr significantly dropped with fractionated 30 Gy irradiation. Independent ex vivo measurements revealed that the lactate dehydrogenase (LDH) activity and protein level were significantly smaller in the irradiated SCCVII tumors compared with the nonirradiated tumors, indicating that a decrease in LDH activity was one of the main factors responsible for the decrease of Lac/Pyr observed on (13)C-MRI. CONCLUSIONS Robust changes of Lac/Pyr observed in the HT-29 after the radiation suggested that lactate conversion from pyruvate monitored with hyperpolarized (13)C-MRI could be useful for the evaluation of early response to radiotherapy. See related commentary by Lai et al., p. 4996.
Collapse
Affiliation(s)
- Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - H Douglas Morris
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Martin J Lizak
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | | | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
2
|
Hyduke DR, Laiakis EC, Li HH, Fornace AJ. Identifying radiation exposure biomarkers from mouse blood transcriptome. ACTA ACUST UNITED AC 2014; 9:365-85. [PMID: 23797995 DOI: 10.1504/ijbra.2013.054701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects. Molecular biomarker approaches possess promise to assess radiation exposure, however, the pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of unequivocal biomarker sets. Here, we present a whole-genome survey of the murine transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy. We used this dataset with the Random Forest algorithm to correctly classify independently generated data and to identify putative metabolite biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Daniel R Hyduke
- Department of Biochemistry and Molecular and Cellular Biology, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
3
|
Jaafar L, Podolsky RH, Dynan WS. Long-term effects of ionizing radiation on gene expression in a zebrafish model. PLoS One 2013; 8:e69445. [PMID: 23936019 PMCID: PMC3728329 DOI: 10.1371/journal.pone.0069445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/07/2013] [Indexed: 01/31/2023] Open
Abstract
Understanding how initial radiation injury translates into long-term effects is an important problem in radiation biology. Here, we define a set of changes in the transcription profile that are associated with the long-term response to radiation exposure. The study was performed in vivo using zebrafish, an established radiobiological model organism. To study the long-term response, 24 hour post-fertilization embryos were exposed to 0.1 Gy (low dose) or 1.0 Gy (moderate dose) of whole-body gamma radiation and allowed to develop for 16 weeks. Liver mRNA profiles were then analyzed using the Affymetrix microarray platform, with validation by quantitative PCR. As a basis for comparison, 16-week old adults were exposed at the same doses and analyzed after 4 hours. Statistical analysis was performed in a way to minimize the effects of multiple comparisons. The responses to these two treatment regimes differed greatly: 360 probe sets were associated primarily with the long-term response, whereas a different 2062 probe sets were associated primarily with the response when adults of the same age were irradiated 4 hours before exposure. Surprisingly, a ten-fold difference in radiation dose (0.1 versus 1.0 Gy) had little effect. Analysis at the gene and pathway level indicated that the long-term response includes the induction of cytokine and inflammatory regulators and transcription and growth factors. The acute response includes the induction of p53 target genes and modulation of the hypoxia-induced transcription factor-C/EBP axis. Results help define genes and pathways affected in the long-term, low and moderate dose radiation response and differentiate them from those affected in an acute response in the same tissue.
Collapse
Affiliation(s)
- Lahcen Jaafar
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert H. Podolsky
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - William S. Dynan
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Mitchell JB, Anver MR, Sowers AL, Rosenberg PS, Figueroa M, Thetford A, Krishna MC, Albert PS, Cook JA. The antioxidant tempol reduces carcinogenesis and enhances survival in mice when administered after nonlethal total body radiation. Cancer Res 2012; 72:4846-55. [PMID: 22805306 PMCID: PMC3445749 DOI: 10.1158/0008-5472.can-12-1879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is significant interest in the development of agents that can ameliorate radiation damage after exposure to radiation has occurred. Here we report that chronic supplementation of the antioxidant Tempol in the diet of mice can reduce body weight without toxicity, decrease cancer, and extend survival when administered after nonlethal total body radiation (TBI). These effects were apparent in two different strains of mice (C3H, CBA) exposed to TBI (3 Gy). Notably, delaying administration of the Tempol diet one month after TBI could also enhance survival. Tempol reduced the incidence of hematopoietic neoplasms (lymphomas) in both strains, whereas both the onset and incidence of nonhematopoietic neoplasms were reduced in CBA mice. These results encourage further study of Tempol as a chemopreventive, to reduce the incidence of radiation-induced second malignancies after a course of definitive radiation therapy. Tempol may also find applications to reduce the risk of cancers in populations exposed to nonlethal radiation due to nuclear accidents or terrorist attacks.
Collapse
Affiliation(s)
- James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu Q, Chen J, Mai B, Amos C, Killary AM, Sen S, Wei C, Frazier ML. A single-nucleotide polymorphism in tumor suppressor gene SEL1L as a predictive and prognostic marker for pancreatic ductal adenocarcinoma in Caucasians. Mol Carcinog 2011; 51:433-8. [PMID: 21656579 DOI: 10.1002/mc.20808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/11/2022]
Abstract
SEL1L is a putative tumor suppressor gene that is frequently down-regulated in pancreatic ductal adenocarcinoma (PDA). A single-nucleotide polymorphism (SNP) rs12435998 in intron3 of SEL1L has previously been reported to be associated with susceptibility to Alzheimer's disease. We hypothesized that this SNP may influence clinical outcomes of patients with PDA. We analyzed DNA samples from 497 Caucasian patients with pathologically confirmed primary PDA. Of these, 98 had been enrolled in a clinical trial of neoadjuvant chemo-radiotherapy and 77 of the 98 had subsequently undergone pancreaticoduodenectomy (PD). We performed Kaplan-Meier analysis to evaluate the correlation between different SNP genotypes and age at diagnosis, survival time after diagnosis, and survival time after PD. In nonsmokers, we found a significant difference in median age at diagnosis between variant genotypes (AG/GG) carriers and wild-type genotype (AA) carriers (58 vs. 62 yr; log-rank test, P = 0.017). Patients with variant genotypes also showed an increased hazard ratio (HR) of 1.45 [95% confidence interval (CI), 1.07-1.97] relative to wild-type genotype. Among the patients in the clinical trial, the variant genotypes carriers had a median post-PD survival time that was 34.7 months shorter than wild-type genotype carriers (log-rank test, P = 0.019; HR, 1.91; 95% CI, 1.09-3.34). Our results suggest that the rs12435998 SNP in SEL1L gene plays a role in modifying age at diagnosis of PDA in Caucasian nonsmokers. In addition, this SNP may serve as a prognostic marker in PDA patients who undergo the same or similar treatment as the clinical trials.
Collapse
Affiliation(s)
- Qian Liu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Darby IA, Vuillier-Devillers K, Pinault E, Sarrazy V, Lepreux S, Balabaud C, Bioulac-Sage P, Desmoulière A. Proteomic analysis of differentially expressed proteins in peripheral cholangiocarcinoma. CANCER MICROENVIRONMENT 2010; 4:73-91. [PMID: 21505563 DOI: 10.1007/s12307-010-0047-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/31/2010] [Indexed: 12/16/2022]
Abstract
Cholangiocarcinoma is an adenocarcinoma of the liver which has increased in incidence over the last thirty years to reach similar levels to other liver cancers. Diagnosis of this disease is usually late and prognosis is poor, therefore it is of great importance to identify novel candidate markers and potential early indicators of this disease as well as molecules that may be potential therapeutic targets. We have used a proteomic approach to identify differentially expressed proteins in peripheral cholangiocarcinoma cases and compared expression with paired non-tumoral liver tissue from the same patients. Two-dimensional fluorescence difference gel electrophoresis after labeling of the proteins with cyanines 3 and 5 was used to identify differentially expressed proteins. Overall, of the approximately 2,400 protein spots visualised in each gel, 172 protein spots showed significant differences in expression level between tumoral and non-tumoral tissue with p < 0.01. Of these, 100 spots corresponding to 138 different proteins were identified by mass spectrometry: 70 proteins were over-expressed whereas 68 proteins were under-expressed in tumoral samples compared to non-tumoral samples. Among the over-expressed proteins, immunohistochemistry studies confirmed an increased expression of 14-3-3 protein in tumoral cells while α-smooth muscle actin and periostin were shown to be overexpressed in the stromal myofibroblasts surrounding tumoral cells. α-Smooth muscle actin is a marker of myofibroblast differentiation and has been found to be a prognostic indicator in colon cancer while periostin may also have a role in cell adhesion, proliferation and migration and has been identified in other cancers. This underlines the role of stromal components in cancer progression and their interest for developing new diagnostic or therapeutic tools.
Collapse
|
7
|
Schleicher SM, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: Implications for future therapeutic approaches. Drug Resist Updat 2010; 13:79-86. [DOI: 10.1016/j.drup.2010.04.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022]
|
8
|
Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, DeGraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 2009; 1:3ra7. [PMID: 20161613 PMCID: PMC2811586 DOI: 10.1126/scitranslmed.3000139] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation-induced damage of normal tissues restricts the therapeutic doses of ionizing radiation that can be delivered to tumors and thereby limits the effectiveness of radiotherapy. Thrombospondin-1 signaling through its cell surface receptor CD47 limits recovery from several types of stress, and mice lacking either gene are profoundly resistant to radiation injury. We describe strategies to protect normal tissues from radiation damage using CD47 or thrombospondin-1 antibodies, a CD47-binding peptide, or antisense suppression of CD47. A morpholino oligonucleotide targeting CD47 confers radioresistance to human endothelial cells in vitro and protects soft tissue, bone marrow, and tumor-associated leukocytes in irradiated mice. In contrast, CD47 suppression in mice bearing melanoma or squamous lung tumors prior to irradiation result in 89% and 71% smaller tumors, respectively. Thus, inhibiting CD47 signaling maintains the viability of normal tissues following irradiation while increasing the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Justin B. Maxhimer
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- The Johns Hopkins Medical Institutions, Department of Surgery, Baltimore, Maryland 21287
| | - David R. Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Hubert B. Shih
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Bethesda, MD 20814
| | - William G. DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria Tsokos
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeff S. Isenberg
- Vascular Medicine Institute of the University of Pittsburgh and the Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Tamaki T, Iwakawa M, Ohno T, Imadome K, Nakawatari M, Sakai M, Tsujii H, Nakano T, Imai T. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model. Int J Radiat Oncol Biol Phys 2009; 74:210-8. [PMID: 19362239 DOI: 10.1016/j.ijrobp.2008.12.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/29/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. METHODS AND MATERIALS Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. RESULTS Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. CONCLUSION We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.
Collapse
Affiliation(s)
- Tomoaki Tamaki
- RadGenomics Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang B, Wang M, Yang Y, Wang Y, Pang X, Su Y, Wang J, Ai G, Zou Z. ERp29 is a radiation-responsive gene in IEC-6 cell. JOURNAL OF RADIATION RESEARCH 2008; 49:587-596. [PMID: 18802324 DOI: 10.1269/jrr.08014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ERp29 is a resident protein of the endoplasmic reticulum (ER) lumen, which is thought to be involved in the folding of secretory proteins. In our previous work, it was found that, when treated with ionizing radiation (IR), the ERp29 expression was increased in mouse intestinal epithelia and cultured IEC-6 cells, which suggested that ERp29 might be a radiation-induced gene. The current work is to confirm the induction of ERp29 by IR and to analyze its role in irradiated IEC-6 cells. Our results showed that ERp29 expression was elevated by IR in IEC-6 cells at mRNA and protein levels in a time-dependent manner. IEC-6 cells with different exogenous ERp29 expression were obtained by transfection with sense and antisense expression vectors of ERp29 coding region. As ERp29 expression was inhibited, these cells exhibited more serious radiation injury and more sensitivity to IR-induced apoptosis. To further elucidate the induction of ERp29, we analyzed the XBP1 expression after IR. Results showed that the spliced form of XBP1 mRNA rapidly reached a peak at 3 hours after irradiation, which indicated that UPR sensor was involved in radiation and might be a reason to induce ERp29 expression. Our results demonstrate that ERp29 is a radiation associated protein and plays an important role in protecting cells from IR.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Apostolou A, Shen Y, Liang Y, Luo J, Fang S. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res 2008; 314:2454-67. [PMID: 18561914 DOI: 10.1016/j.yexcr.2008.05.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 01/06/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.
Collapse
Affiliation(s)
- Andria Apostolou
- Medical Biotechnology Center, UMBI Building, N359, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|