1
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Zhang RY, Zhang X, Zhang L, Wu YC, Sun XJ, Li L. Tetrahydroxystilbene glucoside protects against sodium azide-induced mitochondrial dysfunction in human neuroblastoma cells. CHINESE HERBAL MEDICINES 2021; 13:255-260. [PMID: 36117503 PMCID: PMC9476786 DOI: 10.1016/j.chmed.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Mitochondrial dysfunction is evident in the early stage of Alzheimer’s disease (AD). Therefore development of drugs that protect mitochondrial function is a promising strategy for AD. The present work was to investigate the effects of 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucosides (TSG) on a mitochondrial dysfunction cell model induced by sodium azide and elucidate the underlying mechanisms. Methods Mitochondrial membrane potential (MMP) was detected by a fluorescence method. Cellular adenosine triphosphate (ATP) level was measured using a firefly luciferase-based kit. Reactive oxygen species (ROS) was detected using dichlorofluorescin diacetate (DCFH-DA). The expression levels of Bcl-2 and Bax were measured by Western blotting assay. Flow cytometry was utilized to measure apoptosis. Results Pretreatment of TSG (25–200 μmol/L) for 24 h significantly elevated MMP and ATP content, reduced ROS level and Bax/Bcl-2 ratio, and inhibited apoptosis in SH-SY5Y cells exposed to sodium azide. Conclusion These results suggest that TSG protects SH-SY5Y cells against sodium azide-induced mitochondrial dysfunction and apoptosis. These findings are helpful to understand the protective effect of TSG on mitochondria, which are involved in the early stage of AD.
Collapse
|
3
|
Antitumor Therapy under Hypoxic Microenvironment by the Combination of 2-Methoxyestradiol and Sodium Dichloroacetate on Human Non-Small-Cell Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3176375. [PMID: 33149807 PMCID: PMC7603622 DOI: 10.1155/2020/3176375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/07/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022]
Abstract
A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 μM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 μl/DCA 40 mM, even in hypoxic conditions.
Collapse
|
4
|
Mahalakshmi M, Kumar P. Phloroglucinol-conjugated gold nanoparticles targeting mitochondrial membrane potential of human cervical (HeLa) cancer cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:450-456. [PMID: 31063960 DOI: 10.1016/j.saa.2019.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In recent, targeting mitochondria in cancer is considered to be a challenging task. This report illustrates preliminary findings from an investigation of the conjugation of gold nanoparticles with a bioactive natural compound, phloroglucinol targeting mitochondrial transmembrane potential of HeLa cancer cells. We systematically investigated the formation of gold-nano conjugates over precisely controlled reaction conditions. Their sharp features enable superior surface plasmon resonance, morphology, surface charge, and stability. We show that gold-nano conjugates scavenging free radicals and persuade cell death in HeLa cancer cells. We also show that gold-nano conjugates induce apoptosis by promoting mitochondrial transmembrane permeation via fluorescent microscopic studies. This work gives new insights into bridging metabolomics and nanotechnology into developing novel lead therapeutic molecules.
Collapse
Affiliation(s)
- Mahalingam Mahalakshmi
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
5
|
Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. J Transl Med 2019; 99:191-199. [PMID: 30291323 DOI: 10.1038/s41374-018-0138-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 11/09/2022] Open
Abstract
Invasion and subsequent metastasis are major characteristics of malignant human renal cell carcinoma (RCC), though the mechanisms remain elusive. Mitochondrial pyruvate carrier (MPC), a key factor that controls pyruvate transportation in mitochondria, is frequently dysregulated in tumor cells and loss of MPC predicts poor prognosis in various types of cancer. However, the clinical relevance and functional significance of MPC in RCC remain to be elucidated. In this study, we investigated the expression of MPC1 and MPC2 in specimens from RCC patients and observed downregulation of MPC1, but not MPC2, in RCC tissues compared with adjacent non-cancerous tissue. Moreover, RCC patients with higher MPC1 expression exhibited longer overall survival rate than those with lower MPC1. Functionally, MPC1 suppressed the invasion of RCC cells in vitro and reduced the growth of RCC cells in vivo, possibly through inhibition of MMP7 and MMP9. Further studies revealed that loss of MPC1 was induced by hypoxia in RCC cells, and notably, MPC1 expression, was negatively correlated with HIF1α expression in RCC cells and patient samples. Taken together, our results identify anti-tumor function of MPC1 in RCC and revealed MPC1 as a novel prognostic biomarker to predict better patient survival.
Collapse
|
6
|
Seixas AA, Gyamfi L, Newsome V, Ranger-Murdock G, Butler M, Rosenthal DM, Zizi F, Youssef I, McFarlane SI, Jean-Louis G. Moderating effects of sleep duration on diabetes risk among cancer survivors: analysis of the National Health Interview Survey in the USA. Cancer Manag Res 2018; 10:4575-4580. [PMID: 30349388 PMCID: PMC6190818 DOI: 10.2147/cmar.s177428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Growing evidence suggests that cancer and diabetes may share common risk factors such as age, race/ethnicity, obesity, insulin resistance, sedentary lifestyle, smoking, and alcohol consumption. However, little is known about how habitual sleep duration (a known cardiometabolic risk factor) may affect the relationship between cancer and diabetes. The aim of this study was to investigate whether sleep duration moderated the relationship between history of cancer and diabetes. Methods Data were extracted from the National Health Interview Survey dataset from 2004 to 2013 containing demographics, chronic diseases, and sleep duration (N=236,406). Data were analyzed to assess the moderating effect of short and long sleep durations on cancer and diabetes mellitus. Results Our findings indicate that short sleep (odds ratio [OR] =1.07, 95% CI =1.03–1.11, P<0.001) and long sleep (OR =1.32, 95% CI =1.26–1.39, P<0.001) were associated with diabetes mellitus in fully adjusted models. However, only long sleep duration significantly moderated the relationship between cancer and diabetes (OR =0.88, 95% CI =0.78–0.98, P<0.05). Conclusion Our findings indicate that for cancer survivors, short sleep was associated with higher self-reported diabetes and long sleep duration may act as a buffer against diabetes mellitus, as the likelihood of self-reported diabetes was lower among cancer survivors who reported long sleep duration. Impact Findings from the current study have clinical and public health implications. Clinically, comprehensive sleep assessments and sleep interventions to improve sleep are needed for cancer survivors who have comorbid diabetes. Our findings can also spur public health reform to make sleep an important component of standard cancer survivorship care, as it reduces other chronic disease like diabetes.
Collapse
Affiliation(s)
- Azizi A Seixas
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health, .,Department of Psychiatry, NYU Langone Health, New York, NY, USA,
| | - Lloyd Gyamfi
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health,
| | - Valerie Newsome
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health,
| | | | - Mark Butler
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health,
| | - Diana Margot Rosenthal
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health,
| | - Ferdinand Zizi
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health,
| | - Irini Youssef
- Division of Endocrinology, Department of Medicine, State University of New York (SUNY), Downstate Medical Center, Brooklyn, NY, USA
| | - Samy I McFarlane
- Division of Endocrinology, Department of Medicine, State University of New York (SUNY), Downstate Medical Center, Brooklyn, NY, USA
| | - Girardin Jean-Louis
- Center for Healthful Behavior Change, Department of Population Health, NYU Langone Health, .,Department of Psychiatry, NYU Langone Health, New York, NY, USA,
| |
Collapse
|
7
|
Sgarbi G, Gorini G, Costanzini A, Barbato S, Solaini G, Baracca A. Hypoxia decreases ROS level in human fibroblasts. Int J Biochem Cell Biol 2017; 88:133-144. [DOI: 10.1016/j.biocel.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/24/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
8
|
McMurray F, Patten DA, Harper ME. Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches. Obesity (Silver Spring) 2016; 24:2301-2310. [PMID: 27804267 DOI: 10.1002/oby.21654] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High levels of reactive oxygen species (ROS) are intricately linked to obesity and associated pathologies, notably insulin resistance and type 2 diabetes. However, ROS are also thought to be important in intracellular signaling, which may paradoxically be required for insulin sensitivity. Many theories have been developed to explain this apparent paradox, which have broadened our understanding of these important small molecules. While many sites for intracellular ROS production have been described, mitochondrial generated ROS remain a major contributor in most cell types. Mitochondrial ROS generation is controlled by a number of factors described in this review. Moreover, these studies have established both a demand for novel sensitive approaches to measure ROS, as well as a need to standardize and review their suitability for different applications. METHODS To properly assess levels of ROS and mitochondrial ROS in the development of obesity and its complications, a growing number of tools have been developed. This paper reviews many of the common methods for the investigation of ROS in mitochondria, cell, animal, and human models. RESULTS Available approaches can be generally divided into those that measure ROS-induced damage (e.g., DNA, lipid, and protein damage); those that measure antioxidant levels and redox ratios; and those that use novel biosensors and probes for a more direct measure of different forms of ROS (e.g., 2',7'-di-chlorofluorescein (DCF), dihydroethidium (DHE) and its mitochondrial targeted form (MitoSOX), Amplex Red, roGFP, HyPer, mt-cpYFP, ratiometric H2 O2 probes, and their derivatives). Moreover, this review provides caveats and strengths for the use of these techniques in different models. CONCLUSIONS Advances in these techniques will undoubtedly advance the understanding of ROS in obesity and may help resolve unanswered questions in the field.
Collapse
Affiliation(s)
- Fiona McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
10
|
Hart PC, Mao M, de Abreu ALP, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro MEL, Santos JH, Bonini MG. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 2015; 6:6053. [PMID: 25651975 PMCID: PMC4319569 DOI: 10.1038/ncomms7053] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD/SOD2) is a mitochondria-resident enzyme that governs the types of reactive oxygen species egressing from the organelle to affect cellular signaling. Here, we demonstrate that MnSOD upregulation in cancer cells establishes a steady flow of H2O2 originating from mitochondria that sustains AMP-activated kinase (AMPK) activation and the metabolic shift to glycolysis. Restricting MnSOD expression or inhibiting AMPK suppress the metabolic switch and dampens the viability of transformed cells indicating that the MnSOD/AMPK axis is critical in support cancer cell bioenergetics. Recapitulating in vitro findings, clinical and epidemiologic analyses of MnSOD expression and AMPK activation indicated that the MnSOD/AMPK pathway is most active in advanced stage and aggressive breast cancer subtypes. Taken together, our results indicate that MnSOD serves as a biomarker of cancer progression and acts as critical regulator of tumor cell metabolism.
Collapse
Affiliation(s)
- Peter C Hart
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Mao Mao
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Andre Luelsdorf P de Abreu
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [3] Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP, 87020-900 Maringa, PR, Brazil
| | - Kristine Ansenberger-Fricano
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Dede N Ekoue
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Douglas Ganini
- Free Radical Metabolite Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences/NIH, 111T.W., Alexander Drive MD-F02, Research Triangle Park, North Carolina 27709, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Richard D Minshall
- 1] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Anesthesiology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Marcia E L Consolaro
- Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP, 87020-900 Maringa, PR, Brazil
| | - Janine H Santos
- Department of Physiology and Pharmacology, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Marcelo G Bonini
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [3] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| |
Collapse
|
11
|
Gasparre G, Porcelli AM, Lenaz G, Romeo G. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol 2013; 5:5/2/a011411. [PMID: 23378588 DOI: 10.1101/cshperspect.a011411] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells are characterized in general by a decrease of mitochondrial respiration and oxidative phosphorylation, together with a strong enhancement of glycolysis, the so-called Warburg effect. The decrease of mitochondrial activity in cancer cells may have multiple reasons, related either to the input of reducing equivalents to the electron transfer chain or to direct alterations of the mitochondrial respiratory complexes. In some cases, the depression of respiratory activity is clearly the consequence of disruptive mitochondrial DNA (mtDNA) mutations and leads as a consequence to enhanced generation of reactive oxygen species (ROS). By acting both as mutagens and cellular mitogens, ROS may contribute directly to cancer progression. On the basis of our experimental evidence, we suggest a deep implication of the supercomplex organization of the respiratory chain as a missing link between oxidative stress, energy failure, and tumorigenesis. We speculate that under conditions of oxidative stress, a dissociation of mitochondrial supercomplexes occurs, with destabilization of complex I and secondary enhanced generation of ROS, thus leading to a vicious circle amplifying mitochondrial dysfunction. An excellent model to dissect the role of pathogenic, disassembling mtDNA mutations in tumor progression and their contribution to the metabolic reprogramming of cancer cells (glycolysis vs. respiration) is provided by an often underdiagnosed subset of tumors, namely, the oncocytomas, characterized by disruptive mutations of mtDNA, especially of complex I subunits. Such mutations almost completely abolish complex I activity, which slows down the Krebs cycle, favoring a high ratio of α-ketoglutarate/succinate and consequent destabilization of hypoxia inducible factor 1α (HIF1α). On the other hand, if complex I is partially defective, the levels of NAD(+) may be sufficient to implement the Krebs cycle with higher levels of intermediates that stabilize HIF1α, thus favoring tumor malignancy. The threshold model we propose, based on the population-like dynamics of mitochondrial genetics (heteroplasmy vs. homoplasmy), implies that below threshold complex I is present and functioning correctly, thus favoring tumor growth, whereas above threshold, when complex I is not assembled, tumor growth is arrested. We have therefore termed "oncojanus" the mtDNA genes whose disruptive mutations have such a double-edged effect.
Collapse
Affiliation(s)
- Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University of Bologna Medical School, 40138 Bologna, Italy
| | | | | | | |
Collapse
|
12
|
Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta Rev Cancer 2012; 1826:238-54. [PMID: 22554970 DOI: 10.1016/j.bbcan.2012.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 02/09/2023]
Abstract
Mitochondria are semi-autonomous organelles that play essential roles in cellular metabolism and programmed cell death pathways. Genomic, functional and structural mitochondrial alterations have been associated with cancer. Some of those alterations may provide a selective advantage to cells, allowing them to survive and grow under stresses created by oncogenesis. Due to the specific alterations that occur in cancer cell mitochondria, these organelles may provide promising targets for cancer therapy. The development of drugs that specifically target metabolic and mitochondrial alterations in tumor cells has become a matter of interest in recent years, with several molecules undergoing clinical trials. This review focuses on the most relevant mitochondrial alterations found in tumor cells, their contribution to cancer progression and survival, and potential usefulness for stratification and therapy.
Collapse
Affiliation(s)
- Inês A Barbosa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
13
|
Lenaz G, Genova ML. Supramolecular Organisation of the Mitochondrial Respiratory Chain: A New Challenge for the Mechanism and Control of Oxidative Phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:107-44. [DOI: 10.1007/978-1-4614-3573-0_5] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:93-136. [PMID: 22399420 DOI: 10.1007/978-94-007-2869-1_5] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is among the major causes of toxicity due to interaction of Reactive Oxygen Species (ROS) with cellular macromolecules and structures and interference with signal transduction pathways. The mitochondrial respiratory chain, specially from Complexes I and III, is considered the main origin of ROS particularly under conditions of high membrane potential, but several other sources may be important for ROS generation, such as mitochondrial p66(Shc), monoamine oxidase, α-ketoglutarate dehydogenase, besides redox cycling of redox-active molecules. ROS are able to oxidatively modify lipids, proteins, carbohydrates and nucleic acids in mitochondria and to activate/inactivate signalling pathways by oxidative modification of redox-active factors. Cells are endowed with several defence mechanisms including repair or removal of damaged molecules, and antioxidant systems, either enzymatic or non-enzymatic. Oxidative stress is at the basis of ageing and many pathological disorders, such as ischemic diseases, neurodegenerative diseases, diabetes, and cancer, although the underlying mechanisms are not always completely understood.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| |
Collapse
|
15
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15:2867-908. [PMID: 21457107 DOI: 10.1089/ars.2010.3685] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Cellular redox homeostasis is the first line of defense against diverse stimuli and is crucial for various biological processes. Reactive oxygen species (ROS), byproducts of numerous cellular events, may serve in turn as signaling molecules to regulate cellular processes such as proliferation, differentiation, and apoptosis. However, when overproduced ROS fail to be scavenged by the antioxidant system, they may damage cellular components, giving rise to senescent, degenerative, or fatal lesions in cells. Accordingly, this review not only covers general mechanisms of ROS production under different conditions, but also focuses on various types of ROS-involved diseases, including atherosclerosis, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, and cancer. In addition, potentially therapeutic agents and approaches are reviewed in a relatively comprehensive manner. However, due to the complexity of ROS and their cellular impacts, we believe that the goal to design more effective approaches or agents may require a better understanding of mechanisms of ROS production, particularly their multifaceted impacts in disease at biochemical, molecular, genetic, and epigenetic levels. Thus, it requires additional tools of omics in systems biology to achieve such a goal. Antioxid. Redox Signal. 15, 2867-2908.
Collapse
Affiliation(s)
- Yuxing Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
16
|
Ovadje P, Chatterjee S, Griffin C, Tran C, Hamm C, Pandey S. Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:86-91. [PMID: 20849941 DOI: 10.1016/j.jep.2010.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
AIM OF STUDY Dandelion extracts have been used in traditional Native American Medicine and Traditional Chinese Medicine (TCM) for treatment of leukemia and breast cancer; however, the mechanism of action remains unknown. Today, DRE is mainly marketed for management of gastrointestinal and liver disorders. The current study aims to determine the anti-cancer activity of dandelion root extract (DRE) against human leukemia, and to evaluate the specificity and mechanism of DRE-induced apoptosis. MATERIALS AND METHODS The effect of DRE on cell viability was evaluated using the colorimetric-based WST-1 assay. Apoptotic cell death was monitored by nuclear condensation and confirmed by exposure of phosphatidylserine to outer leaflet of plasma membrane. Activation of caspases was detected using a fluorogenic substrate specific to either caspase-8 or -3. Loss of mitochondrial membrane potential was observed by microscopy using JC-1 dye. The apoptotic effect of DRE was also evaluated on a dominant-negative FADD (Fas-associated death domain) cell line and non-cancerous peripheral blood mononuclear cells (PBMCs). RESULTS Aqueous DRE effectively induces apoptosis in human leukemia cell lines in a dose and time dependent manner. Very early activation of caspase-8 and the subsequent activation of caspase-3 indicate that DRE may be inducing extrinsic or receptor-mediated apoptosis. Caspase inhibition rendered this extract ineffective, thus DRE-induced apoptosis is caspase-dependent. Moreover, the dominant-negative FADD cells that are unable to form a complete DISC (death-inducing signaling complex) were resistant to DRE treatment, which further confirms our hypothesis that DRE induces receptor-mediated apoptosis. Interestingly, non-cancerous peripheral blood mononuclear cells (PBMCs) exposed to aqueous DRE under the same treatment conditions as leukemia cells were not significantly affected. CONCLUSION Our results suggest that aqueous DRE contains components that act to induce apoptosis selectively in cultured leukemia cells, emphasizing the importance of this traditional medicine and thus presents a potential novel non-toxic alternative to conventional leukemia therapy.
Collapse
Affiliation(s)
- P Ovadje
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
18
|
Zhan X, Desiderio DM. The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J 2010. [PMID: 23199087 PMCID: PMC3405333 DOI: 10.1007/s13167-010-0028-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pituitary adenomas account for ∼10% of intracranial tumors, and they cause the compression of nearby structures and the inappropriate expression of pituitary hormones. Unlike functional pituitary adenomas, nonfunctional (NF) pituitary adenomas account for ∼30% of pituitary tumors, and are large enough to cause blindness; because they do not cause any clinical hormone hypersecretion, they are difficult to detect at an early stage; and hypopituitarism results. No effective molecular biomarkers or chemical therapy have been approved for the clinical setting. Because an NF pituitary adenoma is highly heterogeneous, differences in the proteins (the proteome) can distinguish among those heterogeneity structures. The components of a proteome dynamically change as an NF adenoma progresses. Changes in protein expression and protein modifications, individually or in combination, might be biomarkers to predict the disease, monitor the tumor progression, and develop an accurate molecular classification for personalized patient treatment. The modalities of proteomic variation might also be useful in the interventional prevention and personalized treatment of patients to halt the occurrence and progression of NF pituitary adenomas.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Health Science Center, 847 Monroe Avenue, Room 117, Memphis, TN 38163 USA
| | | |
Collapse
|
19
|
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1171-7. [PMID: 20153717 DOI: 10.1016/j.bbabio.2010.02.011] [Citation(s) in RCA: 427] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 12/20/2022]
Abstract
It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondria's central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O2] sensors, convey signals to HIF-1 directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F0 ATPase in the hypoxia-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
20
|
Zhan X, Desiderio DM. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 2010; 3:13. [PMID: 20426862 PMCID: PMC2884164 DOI: 10.1186/1755-8794-3-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/28/2010] [Indexed: 12/25/2022] Open
Abstract
Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular development, and no canonical toxicity pathways were identified. Conclusions This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.
Collapse
Affiliation(s)
- Xianquan Zhan
- University of Tennessee Health Science Center, Memphis, USA.
| | | |
Collapse
|
21
|
Nagle DG, Zhou YD. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2009; 8:415-429. [PMID: 20622986 PMCID: PMC2901131 DOI: 10.1007/s11101-009-9120-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Marine natural products have become a major source of new chemical entities in the discovery of potential anticancer agents that potently suppress various antitumor molecular targets. As a consequence of insufficient vascularization, hypoxic regions form within rapidly growing solid tumor masses. Specific alterations of gene expression in these hypoxic tumor cells help facilitate the survival and metastatic spread of solid tumors. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1) that regulates the expression of more than 100 genes involved in cellular adaptation and survival under hypoxic stress. Clinical studies in cancer patients indicate that HIF-1 activation is directly correlated with advanced disease stages and treatment resistance. HIF-1 has emerged as an important tumor-selective molecular target for anticancer drug discovery. As a result, natural product-based inhibitors of HIF-1 activation have been identified from plants and microorganisms. Recently, structurally unique natural products from marine sponges, crinoids, and algae have been identified as HIF-1 activation inhibitors. The US National Cancer Institute's Open Repository of marine invertebrate and algae extracts has proven to be a valuable source of natural product HIF-1 inhibitors. Among the active compounds identified, certain marine natural products have also been shown to suppress the hypoxic induction of HIF-1 target genes such as vascular endothelial growth factor (VEGF). Some of these marine HIF-1 inhibitors act by interfering with the generation of mitochondrial signaling molecules in hypoxic cells. However, the precise mechanisms of action for many newly identified marine natural product HIF-1 inhibitors remain unresolved.
Collapse
Affiliation(s)
- Dale G. Nagle
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Yu-Dong Zhou
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|
22
|
Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD, Hacia JG. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 2008; 9:521. [PMID: 18980691 PMCID: PMC2612029 DOI: 10.1186/1471-2164-9-521] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/03/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA) levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted rho0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. RESULTS Cultured A549 rho0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. CONCLUSION We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells.
Collapse
Affiliation(s)
- Darren Magda
- Pharmacyclics Inc., 995 East Arques Avenue, Sunnyvale, CA, 94085, USA
| | - Philip Lecane
- Pharmacyclics Inc., 995 East Arques Avenue, Sunnyvale, CA, 94085, USA
| | - Julia Prescott
- Pharmacyclics Inc., 995 East Arques Avenue, Sunnyvale, CA, 94085, USA
| | - Patricia Thiemann
- Pharmacyclics Inc., 995 East Arques Avenue, Sunnyvale, CA, 94085, USA
| | - Xuan Ma
- Pharmacyclics Inc., 995 East Arques Avenue, Sunnyvale, CA, 94085, USA
| | - Patricia K Dranchak
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA, 90089, USA
| | - Donna M Toleno
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA, 90089, USA
| | - Krishna Ramaswamy
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA, 90089, USA
| | - Kimberly D Siegmund
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA, 90089, USA
| |
Collapse
|
23
|
Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008; 34:592-602. [PMID: 18538481 PMCID: PMC2585991 DOI: 10.1016/j.ctrv.2008.04.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/10/2008] [Accepted: 04/16/2008] [Indexed: 12/28/2022]
Abstract
The development of resistance to variety of chemotherapeutic agents is one of the major challenges in effective cancer treatment. Tumor cells are able to generate a multi-drug resistance (MDR) phenotype due to microenvironmental selection pressures. This review addresses the use of nanotechnology-based delivery systems to overcome MDR in solid tumors. Our own work along with evidence from the literature illustrates the development of various types of engineered nanocarriers specifically designed to enhance tumor-targeted delivery through passive and active targeting strategies. Additionally, multi-functional nanocarriers are developed to enhance drug delivery and overcome MDR by either simultaneous or sequential delivery of resistance modulators (e.g., with P-glycoprotein substrates), agents that regulate intracellular pH, agents that lower the apoptotic threshold (e.g., with ceramide), or in combination with energy delivery (e.g., sound, heat, and light) to enhance the effectiveness of anticancer agents in refractory tumors. In preclinical studies, the use of multi-functional nanocarriers has shown significant promise in enhancing cancer therapy, especially against MDR tumors.
Collapse
Affiliation(s)
- Lara S. Jabr-Milane
- Department of Pharmaceutical Sciences School of Pharmacy Northeastern University 110 Mugar Life Sciences Building Boston, MA 02115
| | - Lilian E. van Vlerken
- Department of Pharmaceutical Sciences School of Pharmacy Northeastern University 110 Mugar Life Sciences Building Boston, MA 02115
| | - Sunita Yadav
- Department of Pharmaceutical Sciences School of Pharmacy Northeastern University 110 Mugar Life Sciences Building Boston, MA 02115
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences School of Pharmacy Northeastern University 110 Mugar Life Sciences Building Boston, MA 02115
| |
Collapse
|
24
|
Abstract
Mitochondria are key regulators of cell life and death and play an important role in a wide range of diseases, including cancer, diabetes, cardiovascular disease, and the age-related neurodegenerative diseases. The unique structural and functional characteristics of mitochondria enable the selective targeting of drugs designed to modulate the function of this organelle for therapeutic gain. This forum discusses (a) potential new mitochondrial targets for therapeutic intervention, including components of the electron transport chain, the permeability transition, and the membrane dynamics protein mitofusin-2; (b) the role of mitochondria-targeted antioxidants including MitoQ and SS peptides in modulating reactive oxygen and chlorine species induced mitochondrial permeabilization and cell death; and (c) the potential use of SS peptides in ischemia and reperfusion tissue injury. In the future, mitochondrial drug-targeting strategies will be expected to open up avenues for manipulating mitochondrial functions and allow for selective protection or eradication of cells for therapeutic gain in a variety of diseases.
Collapse
Affiliation(s)
- Jeffrey S. Armstrong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|