1
|
Liu Y, Shang S, Liu C, Liu Y, Xu K, He D, Wang L. Roles of the Sec2p Gene in the Growth and Pathogenicity Regulation of Aspergillus fumigatus. J Fungi (Basel) 2025; 11:36. [PMID: 39852455 PMCID: PMC11767236 DOI: 10.3390/jof11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a filamentous fungus that causes invasive aspergillosis in immunocompromised individuals. Regulating fungal growth is crucial for preventing disease development. This study found that deleting the guanine nucleotide exchange factor Sec2p gene led to slower A. fumigatus growth and reduced the fungal burden and mortality of infected mice. However, the mechanism by which this gene affects A. fumigatus growth and pathogenicity remains unclear. Transmission electron microscopy revealed that the vacuoles of the gene knockout strain ΔSec2p accumulated more autophagosomes, indicating inhibition of autophagosome degradation. When phenylmethylsulfonyl fluoride was applied to inhibit autophagosome degradation, the ΔSec2p strain produced fewer autophagosomes; the ΔSec2p autophagy pathway was inhibited, affecting A. fumigatus' nutrient homeostasis and growth. Unlike the wild type, the ΔSec2p strain showed strong resistance to cell wall stress. When exposed to caspofungin, Sec2p negatively regulated the expression of cell wall integrity (CWI) pathway genes and participated in the cell wall stress response of A. fumigatus. Furthermore, this gene positively regulated the autophagy pathway and enhanced CWI pathway gene expression to respond to rapamycin-induced autophagy. In summary, Sec2p positively regulated the autophagy pathway; it negatively regulated the CWI pathway during cell wall stress, coordinating the growth and pathogenicity of A. fumigatus.
Collapse
Affiliation(s)
- Yuhuan Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Shumi Shang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Cong Liu
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;
| | - Yichen Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Keyang Xu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| |
Collapse
|
2
|
Leal-Dutra CA, Yuen LM, Guedes BAM, Contreras-Serrano M, Marques PE, Shik JZ. Evidence that the domesticated fungus Leucoagaricus gongylophorus recycles its cytoplasmic contents as nutritional rewards to feed its leafcutter ant farmers. IMA Fungus 2023; 14:19. [PMID: 37715276 PMCID: PMC10503033 DOI: 10.1186/s43008-023-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Leafcutter ants farm a fungal cultivar (Leucoagaricus gongylophorus) that converts inedible vegetation into food that sustains colonies with up to millions of workers. Analogous to edible fruits of crops domesticated by humans, L. gongylophorus has evolved specialized nutritional rewards-swollen hyphal cells called gongylidia that package metabolites and are consumed by ant farmers. Yet, little is known about how gongylidia form, and thus how fungal physiology and ant provisioning collectively govern farming performance. We explored the process of gongylidium formation using advanced microscopy to image the cultivar at scales of nanometers, and both in vitro experiments and in silico analyses to examine the mechanisms of gongylidia formation when isolated from ant farmers. We first used transmission electron, fluorescence, and confocal microscopy imaging to see inside hyphal cells. This imaging showed that the cultivar uses a process called autophagy to recycle its own cellular material (e.g. cytosol, mitochondria) and then shuttles the resulting metabolites into a vacuole whose continual expansion displaces other organelles and causes the gongylidium cell's bulging bulb-like appearance. We next used scanning electron microscopy and light microscopy to link this intracellular rearrangement to the external branching patterns of gongylidium cells as they clump together into edible bundles called staphyla. We next confirmed that autophagy plays a critical role in gongylidium formation both: (1) in vitro as gongylidium suppression occurred when isolated fungal cultures were grown on media with autophagy inhibitors, and (2) in silico as differential transcript expression (RNA-seq) analyses showed upregulation of multiple autophagy gene isoforms in gongylidia relative to undifferentiated hyphae. While autophagy is a ubiquitous and often highly derived process across the tree of life, our study reveals a new role for autophagy as a mechanism of functional integration between ant farmers and their fungal crop, and potentially as a signifier of higher-level homeostasis between uniquely life-time committed ectosymbionts.
Collapse
Affiliation(s)
- Caio Ambrosio Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Lok Man Yuen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Department of Biology, ETH Zürich, Universitätsstrasse 16, Zürich, 8092, Switzerland
| | - Bruno Augusto Maciel Guedes
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, MG, 35020-360, Brazil
| | - Marta Contreras-Serrano
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
3
|
Shen J, Ma M, Duan W, Huang Y, Shi B, Wu Q, Wei X. Autophagy Alters the Susceptibility of Candida albicans Biofilms to Antifungal Agents. Microorganisms 2023; 11:2015. [PMID: 37630575 PMCID: PMC10458732 DOI: 10.3390/microorganisms11082015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Candida albicans (C. albicans) reigns as a major cause of clinical candidiasis. C. albicans biofilms are known to increase resistance to antifungal agents, making biofilm-related infections particularly challenging to treat. Drug resistance is of particular concern due to the spread of multidrug-resistant fungal pathogens, while autophagy is crucial for the maintenance of cellular homeostasis. Therefore, this study aimed to investigate the effects of an activator and an inhibitor of autophagy on the susceptibility of C. albicans biofilms to antifungal agents and the related mechanisms. The susceptibility of C. albicans biofilms to different antifungal agents after treatment with or without the autophagy activator or inhibitor was evaluated using XTT assay. Alkaline phosphatase (ALP) activity and reactive oxygen species (ROS) level, as well as the expression of ROS-related and autophagy-related genes, were examined to evaluate the autophagic activity of C. albicans biofilms when treated with antifungal agents. The autophagosomes were observed by transmission electron microscopy (TEM). The susceptibility of C. albicans biofilms to antifungal agents changed when autophagy changed. The ALP activity and ROS level of C. albicans biofilms increased with the treatment of antifungal agents, and autophagosomes could be observed in C. albicans biofilms. Autophagy was involved in the susceptibility of C. albicans biofilms to antifungal agents.
Collapse
Affiliation(s)
- Jiadi Shen
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Ming Ma
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Wei Duan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Yun Huang
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Banruo Shi
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Qiaochu Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Xin Wei
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210000, China; (J.S.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
4
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
5
|
Pettinari G, Finello J, Plaza Rojas M, Liberatore F, Robert G, Otaiza-González S, Velez P, Theumer M, Agudelo-Romero P, Enet A, González C, Lascano R, Saavedra L. Autophagy modulates growth and development in the moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2022; 13:1052358. [PMID: 36600927 PMCID: PMC9807217 DOI: 10.3389/fpls.2022.1052358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Physcomitrium patens apical growing protonemal cells have the singularity that they continue to undergo cell divisions as the plant develops. This feature provides a valuable tool to study autophagy in the context of a multicellular apical growing tissue coupled to development. Herein, we showed that the core autophagy machinery is present in the moss P. patens, and characterized the 2D and 3D growth and development of atg5 and atg7 loss-of-function mutants under optimal and nutrient-deprived conditions. Our results showed that 2D growth of the different morphological and functional protonemata apical growing cells, chloronema and caulonema, is differentially modulated by this process. These differences depend on the protonema cell type and position along the protonemal filament, and growth condition. As a global plant response, the absence of autophagy favors the spread of the colony through protonemata growth at the expense of a reduction of the 3D growth, such as the buds and gametophore development, and thus the adult gametophytic and reproductive phases. Altogether this study provides valuable information suggesting that autophagy has roles during apical growth with differential responses within the cell types of the same tissue and contributes to life cycle progression and thus the growth and development of the 2D and 3D tissues of P. patens.
Collapse
Affiliation(s)
- Georgina Pettinari
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Finello
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Plaza Rojas
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Franco Liberatore
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
| | - Germán Robert
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Pilar Velez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
| | - Martin Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
| | | | - Alejandro Enet
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
| | - Claudio González
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramiro Lascano
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Saavedra
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Khalid AR, Zhang S, Luo X, Shaheen H, Majeed A, Maqbool M, Zahid N, Rahim J, Ren M, Qiu D. Functional Analysis of Autophagy-Related Gene ATG12 in Potato Dry Rot Fungus Fusarium oxysporum. Int J Mol Sci 2021; 22:ijms22094932. [PMID: 34066497 PMCID: PMC8125257 DOI: 10.3390/ijms22094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.
Collapse
Affiliation(s)
- A. Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.L.); (M.R.)
- Department of Plant Pathology, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan
- Correspondence: (A.R.K.); (D.Q.)
| | - Shumin Zhang
- School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, China;
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.L.); (M.R.)
| | - Hamayun Shaheen
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan;
| | - Mehdi Maqbool
- Department of Horticulture, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan; (M.M.); (N.Z.)
| | - Noosheen Zahid
- Department of Horticulture, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan; (M.M.); (N.Z.)
| | - Junaid Rahim
- Department of Entomology, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan;
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.L.); (M.R.)
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.L.); (M.R.)
- Correspondence: (A.R.K.); (D.Q.)
| |
Collapse
|
7
|
Teichert I, Pöggeler S, Nowrousian M. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl Microbiol Biotechnol 2020; 104:3691-3704. [PMID: 32162092 PMCID: PMC7162830 DOI: 10.1007/s00253-020-10504-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Abstract Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, “omics” methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. Key points •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.
Collapse
Affiliation(s)
- Ines Teichert
- General and Molecular Botany, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
8
|
Khalid AR, Lv X, Naeem M, Mehmood K, Shaheen H, Dong P, Qiu D, Ren M. Autophagy Related Gene ( ATG3) is a Key Regulator for Cell Growth, Development, and Virulence of Fusarium oxysporum. Genes (Basel) 2019; 10:genes10090658. [PMID: 31466418 PMCID: PMC6769740 DOI: 10.3390/genes10090658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 01/20/2023] Open
Abstract
Fusarium oxysporum is the most important pathogen of potatoes which causes post-harvest destructive losses and deteriorates the market value of potato tubers worldwide. Here, F. oxysporum was used as a host pathogen model system and it was revealed that autophagy plays a vital role as a regulator in the morphology, cellular growth, development, as well as the pathogenicity of F. oxysporum. Previous studies based upon identification of the gene responsible for encoding the autophagy pathway components from F. oxysporum have shown putative orthologs of 16 core autophagy related-ATG genes of yeast in the genome database which were autophagy-related and comprised of ubiquitin-like protein atg3. This study elucidates the molecular mechanism of the autophagy-related gene Foatg3 in F. oxysporum. A deletion (∆) mutants of F. oxysporum (Foatg3∆) was generated to evaluate nuclear dynamics. As compared to wild type and Foatg3 overexpression (OE) strains, Foatg3∆ strains failed to show positive MDC (monodansylcadaverine) staining which revealed that Foatg3 is compulsory for autophagy in F. oxysporum. A significant reduction in conidiation and hyphal growth was shown by the Foatg3∆ strains resulting in loss of virulence on potato tubers. The hyphae of Foatg3∆ mutants contained two or more nuclei within one hyphal compartment while wild type hyphae were composed of uninucleate hyphal compartments. Our findings reveal that the vital significance of Foatg3 as a key target in controlling the dry rot disease in root crops and potato tubers at the postharvest stage has immense potential of disease control and yield enhancement.
Collapse
Affiliation(s)
- A Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiulan Lv
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Muhammad Naeem
- Bioengineering College, Chongqing University, Chongqing 401331, China
| | - Khalid Mehmood
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad 05822, Pakistan
| | - Hamayun Shaheen
- Department of Entomology, University of Poonch AJK, Rawalkot 12350, Pakistan
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
9
|
Shi L, Wang J, Quan R, Yang F, Shang J, Chen B. CpATG8, a Homolog of Yeast Autophagy Protein ATG8, Is Required for Pathogenesis and Hypovirus Accumulation in the Chest Blight Fungus. Front Cell Infect Microbiol 2019; 9:222. [PMID: 31355148 PMCID: PMC6635641 DOI: 10.3389/fcimb.2019.00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a degradation system in the cell, involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. Autophagy is induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. In this study, by using electron microscopy, we observed that hypovirus CHV1-EP713 infection of Cryphonectria parasitica, the causative agent of chestnut blight disease, caused proliferation of autophagic-like vesicles. This phenomenon could be mimicked by treating the wild-type strain of the fungus EP155 with the autophagy induction drug rapamycin. Some of the hypovirulence-associated traits, including reduced pigmentation and conidiation, were also observed in the rapamycin-treated EP155. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that genes involved in autophagy were up-regulated in expression. Deletion of cpatg8, a gene encoding a homolog of ATG8 in Saccharomyces cerevisiae, resulted in attenuation of virulence and reduction in sporulation, as well as accumulation of the double-stranded viral RNA. Furthermore, virus-encoded p29 protein was found to co-localize with CpATG8, implying that the viral protein may interfere with the function of CpATG8. Taken together, these findings show that cpatg8 can be regulated by the hypovirus and is required for virulence and development of the fungus and accumulation of viral dsRNA in chestnut blight fungus.
Collapse
Affiliation(s)
- Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Feng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinjie Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Khalid AR, Zhang S, Luo X, Mehmood K, Rahim J, Shaheen H, Dong P, Qiu D, Ren M. Role of Autophagy-Related Gene atg22 in Developmental Process and Virulence of Fusarium oxysporum. Genes (Basel) 2019; 10:genes10050365. [PMID: 31086099 PMCID: PMC6562804 DOI: 10.3390/genes10050365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023] Open
Abstract
Autophagy is a universal catabolic process preserved in eukaryotes from yeast to plants and mammals. The main purpose of autophagy is to degrade cytoplasmic materials within the lysosome/vacuole lumen and generate an internal nutrient pool that is recycled back to the cytosol during nutrient stress. Here, Fusarium oxysporum was utilized as a model organism, and we found that autophagy assumes an imperative job in affecting the morphology, development, improvement and pathogenicity of F. oxysporum. The search of autophagy pathway components from the F. oxysporum genome database recognized putative orthologs of 16 core autophagy-related (ATG) genes of yeast, which additionally incorporate the ubiquitin-like protein atg22. Present study elucidates the unreported role of Foatg22 in formation of autophagosomes. The deletion mutant of Foatg22 did not demonstrate positive monodansylcadaverine (MDC) staining, which exposed that Foatg22 is required for autophagy in F. oxysporum. Moreover, the ∆Foatg22 strains exhibited a decrease in hyphal development and conidiation, and reduction in pathogenicity on potato tubers and leaves of potato plant. The hyphae of ∆Foatg22 mutants were less dense when contrasted with wild-type (WT) and overexpression (OE) mutants. Our perceptions demonstrated that Foatg22 might be a key regulator for the control of dry rot disease in tuber and root crops during postharvest stage.
Collapse
Affiliation(s)
- A Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
- Department of Plant Pathology, University of Poonch AJK, Rawalkot 12350, Pakistan.
| | - Shumin Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Khalid Mehmood
- Department of Entomology, University of Poonch AJK, Rawalkot 12350, Pakistan.
| | - Junaid Rahim
- Department of Entomology, University of Poonch AJK, Rawalkot 12350, Pakistan.
| | - Hamayun Shaheen
- Department of Botany, The University of Azad Jammu & Kashmir, Muzafarabad13100, Pakistan.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Liu N, Ren W, Li F, Chen C, Ma Z. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Curr Genet 2018; 65:293-300. [PMID: 30167777 DOI: 10.1007/s00294-018-0882-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Autophagy serves as a survival mechanism against starvation and has been reported to be important for cell growth and differentiation in eukaryotes. Here, we investigated the function of a cysteine protease BcAtg4 in the gray mold fungus Botrytis cinerea. Yeast complementation experiments revealed that Bcatg4 can functionally replace the counterpart of yeast. Subcellular localization exhibited that BcAtg4 diffused in cytoplasm at different developmental stages. Targeted gene deletion of Bcatg4 (ΔBcatg4) led to autophagy blocking and a significant retardation in growth and conidiation. In addition, ΔBcatg4 failed to form sclerotia. Infection tests demonstrated that ΔBcatg4 was severely attenuated in virulence on different host plant tissues. All of the phenotypic defects were restored by reintroducing an intact copy of Bcatg4 into ΔBcatg4. These results indicate that Bcatg4 plays multiple roles in the developmental processes and pathogenesis of B. cinerea.
Collapse
Affiliation(s)
- Na Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fengjie Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Ribeiro GF, de Góes CG, Onorio DS, de Campos CBL, Morais FV. Autophagy in Paracoccidioides brasiliensis under normal mycelia to yeast transition and under selective nutrient deprivation. PLoS One 2018; 13:e0202529. [PMID: 30138387 PMCID: PMC6107164 DOI: 10.1371/journal.pone.0202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/03/2018] [Indexed: 11/23/2022] Open
Abstract
Paracoccidioides spp. is a thermally dimorphic fungus endemic to Latin America and the etiological agent of paracoccidioidomycosis (PCM), a granulomatous disease acquired through fungal propagule inhalation by its mammalian host. The infection is established after successful mycelia to yeast transition in the host pulmonary alveoli. The challenging environment inside the host exposes the fungus to the need of adaptation in order to circumvent nutritional, thermal, oxidative, immunological and other stresses that can directly affect their survival. Considering that autophagy is a response to abrupt environmental changes and is induced by stress conditions, this study hypothesizes that this process might be crucially involved in the adaptation of Paracoccidioides spp. to the host and, therefore, it is essential for the proper establishment of the disease. By labelling autophagous vesicles with monodansylcadaverine, autophagy was observed as an early event in cells during the normal mycelium to yeast transition, as well as in yeast cells of P. brasiliensis under glucose deprivation, and under either rapamycin or 3-methyladenine (3-MA). Findings in this study demonstrated that autophagy is triggered in P. brasiliensis during the thermal-induced mycelium to yeast transition and by glucose-limited conditions in yeasts, both of which modulated by rapamycin or 3-MA. Certainly, further genetic and in vivo analyses are needed in order to finally address the contribution of autophagy for adaptation. Yet, our data propose that autophagy possibly plays an important role in Paracoccidioides brasiliensis virulence and pathogenicity.
Collapse
Affiliation(s)
- Giselle Ferreira Ribeiro
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Caroline Gonçalves de Góes
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Diego Santos Onorio
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Cláudia Barbosa Ladeira de Campos
- Laboratório de Bioquímica, Biologia Celular e Molecular de Fungos, Instituto de Ciência e Tecnologia–Universidade Federal de São Paulo–UNIFESP, São José dos Campos, SP, Brazil
| | - Flavia Villaça Morais
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
- * E-mail:
| |
Collapse
|
13
|
The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.02455-17. [PMID: 29572212 DOI: 10.1128/aem.02455-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8, a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (ΔBcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the ΔBcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinereaIMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea.
Collapse
|
14
|
Li J, Yu Q, Zhang B, Xiao C, Ma T, Yi X, Liang C, Li M. Stress-associated endoplasmic reticulum protein 1 (SERP1) and Atg8 synergistically regulate unfolded protein response (UPR) that is independent on autophagy in Candida albicans. Int J Med Microbiol 2018; 308:378-386. [PMID: 29544880 DOI: 10.1016/j.ijmm.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular stresses could activate several response processes, such as the unfolded protein response (UPR), autophagy and oxidative stress response to restore cellular homeostasis or render cell death. Herein, we identified the Candida albicans stress-associated endoplasmic reticulum protein 1 (SERP1), also known as Ysy6, which was involved in endoplasmic reticulum (ER) stress response. We found that deletion of both SERP1/YSY6 and ATG8 led to hypersensitivity to tunicamycin (TN), and resulted in severe mitochondrial dysfunction under this stress. UPR reporting systems illustrated that the double mutation attenuated splicing of HAC1 mRNA, followed by decreased level of UPR activation. In addition, the atg8Δ/Δ ysy6Δ/Δ double mutant had normal autophagic degradation of the ER component Sec63 under ER stress, suggesting that SERP1/Ysy6 and Atg8 synergistically regulated UPR that is independent on autophagy. We also found that deletion of both SERP1/YSY6 and ATG8 caused the loss of virulence. This study reveals the important role of SERP1/Ysy6 and Atg8 in ER stress response and virulence in C. albicans.
Collapse
Affiliation(s)
- Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Chao Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China.
| |
Collapse
|
15
|
Dong WX, Ding JL, Gao Y, Peng YJ, Feng MG, Ying SH. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana
to host niches: autophagy-related gene 8 as an example. Environ Microbiol 2017; 19:4126-4139. [DOI: 10.1111/1462-2920.13862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Xia Dong
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Yang Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
16
|
Li B, Liu L, Li Y, Dong X, Zhang H, Chen H, Zheng X, Zhang Z. The FgVps39-FgVam7-FgSso1 Complex Mediates Vesicle Trafficking and Is Important for the Development and Virulence of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:410-422. [PMID: 28437167 DOI: 10.1094/mpmi-11-16-0242-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Luping Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Ying Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xin Dong
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Huaigu Chen
- 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| |
Collapse
|
17
|
Burggraaf AM, Punt PJ, Ram AFJ. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungusAspergillus niger. FEMS Microbiol Lett 2016; 363:fnw152. [DOI: 10.1093/femsle/fnw152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
|
18
|
Ying SH, Liu J, Chu XL, Xie XQ, Feng MG. The autophagy-related genes BbATG1 and BbATG8 have different functions in differentiation, stress resistance and virulence of mycopathogen Beauveria bassiana. Sci Rep 2016; 6:26376. [PMID: 27197558 PMCID: PMC4873834 DOI: 10.1038/srep26376] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
Autophagy-related proteins play significantly different roles in eukaryotes. In the entomopathogenic fungus Beauveria bassiana, autophagy is associated with fungal growth and development. BbATG1 (a serine/threonine protein kinase) and BbATG8 (a ubiquitin-like protein) have similar roles in autophagy, but different roles in other processes. Disruption mutants of BbATG1 and BbATG8 had impaired conidial germination under starvation stress. The mutant ΔBbATG8 exhibited enhanced sensitivity to oxidative stress, while a ΔBbATG1 mutant did not. BbATG1 and BbATG8 showed different roles in spore differentiation. The blastospore yield was reduced by 70% and 92% in ΔBbATG1 and ΔBbATG8 mutants, respectively, and the double mutant had a reduction of 95%. Conidial yield was reduced by approximately 90% and 50% in ΔBbATG1 and ΔBbATG8 mutants, respectively. A double mutant had a reduction similar to ΔBbATG1. Additionally, both BbATG1 and BbATG8 affected the levels of conidial protein BbCP15p required for conidiation. The virulence of each autophagy-deficient mutant was considerably weakened as indicated in topical and intrahemocoel injection assays, and showed a greater reduction in topical infection. However, BbATG1 and BbATG8 had different effects on fungal virulence. Our data indicate that these autophagy-related proteins have different functions in fungal stress response, asexual development and virulence.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| | - Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| | - Xin-Ling Chu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| | - Xue-Qin Xie
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| |
Collapse
|
19
|
Strom NB, Bushley KE. Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fungal Biol Biotechnol 2016; 3:4. [PMID: 28955463 PMCID: PMC5611628 DOI: 10.1186/s40694-016-0022-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Heterokaryosis is an integral part of the parasexual cycle used by predominantly asexual fungi to introduce and maintain genetic variation in populations. Research into fungal heterokaryons began in 1912 and continues to the present day. Heterokaryosis may play a role in the ability of fungi to respond to their environment, including the adaptation of arbuscular mycorrhizal fungi to different plant hosts. The parasexual cycle has enabled advances in fungal genetics, including gene mapping and tests of complementation, dominance, and vegetative compatibility in predominantly asexual fungi. Knowledge of vegetative compatibility groups has facilitated population genetic studies and enabled the design of innovative methods of biocontrol. The vegetative incompatibility response has the potential to be used as a model system to study biological aspects of some human diseases, including neurodegenerative diseases and cancer. By combining distinct traits through the formation of artificial heterokaryons, fungal strains with superior properties for antibiotic and enzyme production, fermentation, biocontrol, and bioremediation have been produced. Future biotechnological applications may include site-specific biocontrol or bioremediation and the production of novel pharmaceuticals.
Collapse
Affiliation(s)
- Noah B Strom
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| |
Collapse
|
20
|
Noda NN, Mizushima N. Atg101: Not Just an Accessory Subunit in the Autophagy-initiation Complex. Cell Struct Funct 2016; 41:13-20. [DOI: 10.1247/csf.15013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nobuo N. Noda
- Laboratory of Structural Chemistry and Biology, Institute of Microbial Chemistry (BIKAKEN)
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
21
|
Corral-Ramos C, Roca MG, Di Pietro A, Roncero MIG, Ruiz-Roldán C. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy 2015; 11:131-44. [PMID: 25560310 DOI: 10.4161/15548627.2014.994413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.
Collapse
Key Words
- Atg, autophagy-related
- BLAST, basic local alignment search tool
- CFW, calcofluor white
- ChFP, cherry fluorescent protein
- DIC, differential interference contrast
- Fusarium oxysporum
- GFP, green fluorescent protein
- HygR, hygromycin resistant
- MDC, monodansylcadaverine
- ORF, open reading frame
- PCR, polymerase chain reaction
- PDA, potato dextrose agar
- PDB, potato dextrose broth
- PMSF, phenylmethylsulfonyl fluoride
- SM, synthetic medium
- WT, wild-type
- autophagy
- filamentous fungi
- gDNA, genomic DNA
- hyphal fusion
- nuclear dynamics
- virulence
Collapse
Affiliation(s)
- Cristina Corral-Ramos
- a Departamento de Genética; Universidad de Córdoba; Campus de Excelencia Agroalimentario ; Córdoba , Spain
| | | | | | | | | |
Collapse
|
22
|
Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y, Wang Y, Li X, Wang L, Zhang B, Li M. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs. Fungal Genet Biol 2015; 81:238-49. [DOI: 10.1016/j.fgb.2015.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 10/24/2022]
|
23
|
Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 2014; 20:1-9. [PMID: 24835421 DOI: 10.1016/j.mib.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Specific localization of appropriate sets of proteins and lipids is central to functions and integrity of organelles, which in turn underlie cellular activities of eukaryotes. Vesicle trafficking is a conserved mechanism of intracellular transport, which ensures such a specific localization to a subset of organelles. In this review article, we summarize recent advances in our understanding of how vesicle trafficking and related organelles support physiology and pathogenicity of filamentous fungi. Examples include a link between Golgi organization and polarity maintenance during hyphal tip growth, a new role of early endosomes in transport of translational machinery, involvement of endosomal/vacuolar compartments in secondary metabolite synthesis, and functions of vacuoles and autophagy in fungal development, nutrient recycling and allocation. Accumulating evidence showing the importance of unconventional secretion in fungal pathogenicity is also summarized.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
24
|
Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biotechnol 2014; 97:9277-90. [PMID: 24077722 DOI: 10.1007/s00253-013-5221-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a tightly controlled degradation process in which eukaryotic cells digest their own cytoplasm containing protein complexes and organelles in the vacuole or lysosome. Two types of autophagy have been described: macroautophagy and microautophagy. Both types can be further divided into nonselective and selective processes. Molecular analysis of autophagy over the last two decades has mostly used the unicellular ascomycetes Saccharomyces cerevisiae and Pichia pastoris. Genetic analysis in these yeasts has identified 36 autophagy-related (atg) genes; many are conserved in all eukaryotes, including filamentous ascomycetes. However, the autophagic machinery also evolved significant differences in fungi, as a consequence of adaptation to diverse fungal lifestyles. Intensive studies on autophagy in the last few years have shown that autophagy in filamentous fungi is not only involved in nutrient homeostasis but in other cellular processes such as cell differentiation, pathogenicity and secondary metabolite production. This mini-review focuses on the specific roles of autophagy in filamentous fungi.
Collapse
|
25
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
26
|
Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:127. [PMID: 24016404 PMCID: PMC3847502 DOI: 10.1186/1754-6834-6-127] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Renewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing carbon source for enzyme production. RESULTS We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30% of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair, iron homeostatis and autophagy. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60% of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional. CONCLUSIONS Our data reveal several major differences in the transcriptome between wheat straw and lactose which may be related to the higher enzyme formation on the former and their further investigation could lead to the development of methods for increasing enzyme production on lactose.
Collapse
Affiliation(s)
- Robert Bischof
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Lukas Fourtis
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, University of Technology of Vienna, Getreidemarkt 9, Vienna A-1060, Austria
| | - Christian Gamauf
- Biotech & Renewables Center, Clariant GmbH, München 81477, Germany
| | - Bernhard Seiboth
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Christian P Kubicek
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| |
Collapse
|
27
|
Peraza-Reyes L, Berteaux-Lecellier V. Peroxisomes and sexual development in fungi. Front Physiol 2013; 4:244. [PMID: 24046747 PMCID: PMC3764329 DOI: 10.3389/fphys.2013.00244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- CNRS, Institut de Génétique et Microbiologie, University Paris-Sud, UMR8621 Orsay, France
| | | |
Collapse
|
28
|
Voigt O, Herzog B, Jakobshagen A, Pöggeler S. Autophagic kinases SmVPS34 and SmVPS15 are required for viability in the filamentous ascomycete Sordaria macrospora. Microbiol Res 2013; 169:128-38. [PMID: 23953726 DOI: 10.1016/j.micres.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a tightly controlled degradation process of all eukaryotes. It includes the sequestration of cytoplasmic contents and organelles within a double-membraned autophagosome. Autophagy involves core autophagy related (atg) genes as well as genes regulating vesicle trafficking. Previously, we analyzed the impact of proteins of the core autophagic machinery SmATG7, SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. While deletion of Smatg8 and Smatg4 abolished fruiting-body formation and impaired vegetative growth, Smatg7 is required for viability. In yeast, the phosphatidylinositol 3-kinase vacuolar protein sorting 34 (Vps34) and its myristoylated membrane targeting unit, the protein kinase Vps15 have been shown to be important regulators of autophagy and vacuolar protein sorting. However, their exact role in filamentous ascomycetes remains elusive. To determine the function of Smvps34 and Smvps15 we isolated genes with high sequence similarity to Saccharomyces cerevisiae VPS34 and VPS15. For both genes we were not able to generate a homokaryotic knockout mutant in S. macrospora, suggesting that Smvps34 and Smvps15 are required for viability. Furthermore, we analyzed the repertoire of vps genes encoded by S. macrospora and could identify putative homologs of nearly all of the 61 VPS genes of S. cerevisiae.
Collapse
Affiliation(s)
- Oliver Voigt
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Britta Herzog
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Antonia Jakobshagen
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
29
|
Xylanase Superproducer: Genome Sequence of a Compost-Loving Thermophilic Fungus, Thermomyces lanuginosus Strain SSBP. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00388-13. [PMID: 23788551 PMCID: PMC3707600 DOI: 10.1128/genomea.00388-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here the draft genome sequence of Thermomyces lanuginosus strain SSBP, which was isolated from soil in South Africa. This fungus produces the largest amount of xylanase ever reported in the literature.
Collapse
|
30
|
Nitsche BM, Burggraaf-van Welzen AM, Lamers G, Meyer V, Ram AFJ. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 2013; 97:8205-18. [DOI: 10.1007/s00253-013-4971-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
|
31
|
Zhou L, Zhao J, Guo W, Zhang T. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae. J Genet Genomics 2013; 40:421-31. [PMID: 23969251 DOI: 10.1016/j.jgg.2013.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agrobacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant transformants per 1 × 10(6) conidia. V. dahliae mutants lacking either VdATG8 or VdATG12 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild-type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in V. dahliae.
Collapse
Affiliation(s)
- Lei Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
32
|
Gao HM, Liu XG, Shi HB, Lu JP, Yang J, Lin FC, Liu XH. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol 2013; 164:300-9. [PMID: 23376292 DOI: 10.1016/j.resmic.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/26/2012] [Indexed: 01/07/2023]
Abstract
Mon1 protein is involved in cytoplasm-to-vacuole trafficking, vacuolar morphology and autophagy, and is required for homotypic vacuole fusion in Saccharomyces cerevisiae. Here we identify MoMON1 from Magnaporthe oryzae as an ortholog of S. cerevisiae MON1, essential for the morphology of the vacuole and vesicle fusion. Target gene deletion of MoMON1 resulted in accumulation of small punctuate vacuoles in the hypha and hypersensitivity to monensin, an antibiotic that blocks intracellular protein transport. The ΔMomon1 mutant exhibited significantly reduced aerial hyphal development and poor conidiation. Conidia of ΔMomon1 were able to differentiate appressoria. However, ΔMomon1 was non-pathogenic on rice leaves, even after wound inoculation. In addition, ΔMomon1 was slightly hypersensitive to Congo red and SDS, but not to cell wall degrading enzymes, suggesting significant alterations in its cell wall. The autophagy process was blocked in the ΔMomon1 mutant. Taken together, our results suggest that MoMON1 has an essential function in vacuolar assembly, autophagy, fungal development and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Hui-Min Gao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu XH, Gao HM, Xu F, Lu JP, Devenish RJ, Lin FC. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy 2012; 8:1415-25. [PMID: 22935638 DOI: 10.4161/auto.21274] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plant pathogenic fungi utilize a series of complex infection structures, in particular the appressorium, to gain entry to and colonize plant tissue. As a consequence of the accumulation of huge quantities of glycerol in the cell the appressorium generates immense intracellular turgor pressure allowing the penetration peg of the appressorium to penetrate the leaf cuticle. Autophagic processes are ubiquitous in eukaryotic cells and facilitate the bulk degradation of macromolecules and organelles. The study of autophagic processes has been extended from the model yeast Saccharomyces cerevisiae to pathogenic fungi such as the rice blast fungus Magnaporthe oryzae. Significantly, null mutants for the expression of M. oryzae autophagy gene homologs lose their pathogenicity for infection of host plants. Clarification of the functions and network of interactions between the proteins expressed by M. oryzae autophagy genes will lead to a better understanding of the role of autophagy in fungal pathogenesis and help in the development of new strategies for disease control.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
34
|
Role of macroautophagy in nutrient homeostasis during fungal development and pathogenesis. Cells 2012; 1:449-63. [PMID: 24710485 PMCID: PMC3901100 DOI: 10.3390/cells1030449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/07/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy is a non-selective, bulk degradation process conserved in eukaryotes. Response to starvation stress and/or regulation of nutrient breakdown/utilization is the major intracellular function of macroautophagy. Recent studies have revealed requirement for autophagy in diverse functions such as nutrient homeostasis, organelle degradation and programmed cell death in filamentous fungal pathogens, for proper morphogenesis and differentiation during critical steps of infection. In this review, we aim to summarize the physiological functions of autophagy in fungal virulence, with an emphasis on nutrient homeostasis in opportunistic human fungal pathogens and in the rice-blast fungus, Magnaporthe oryzae. We briefly summarize the role of autophagy on the host side: for resistance to, or subversion by, the pathogens.
Collapse
|
35
|
Chen SCA, Lewis RE, Kontoyiannis DP. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2011; 2:280-95. [PMID: 21701255 PMCID: PMC3173675 DOI: 10.4161/viru.2.4.16764] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Westmead, NSW Australia
| | | | | |
Collapse
|
36
|
Bartoszewska M, Opaliński L, Veenhuis M, van der Klei IJ. The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 2011; 33:1921-31. [PMID: 21660569 PMCID: PMC3173629 DOI: 10.1007/s10529-011-0664-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/24/2011] [Indexed: 01/08/2023]
Abstract
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|