1
|
Fernández-Otal Á, Guío J, Sarasa-Buisan C, Peleato ML, Fillat MF, Lanas Á, Bes MT. Functional characterization of Fur from the strict anaerobe Clostridioides difficile provides insight into its redox-driven regulatory capacity. FEBS J 2024; 291:3604-3627. [PMID: 38775144 DOI: 10.1111/febs.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024]
Abstract
Clostridioides (formerly Clostridium) difficile is a leading cause of infectious diarrhea associated with antibiotic therapy. The ability of this anaerobic pathogen to acquire enough iron to proliferate under iron limitation conditions imposed by the host largely determines its pathogenicity. However, since high intracellular iron catalyzes formation of deleterious reactive hydroxyl radicals, iron uptake is tightly regulated at the transcriptional level by the ferric uptake regulator Fur. Several studies relate lacking a functional fur gene in C. difficile cells to higher oxidative stress sensitivity, colonization defect and less toxigenicity, although Fur does not appear to directly regulate either oxidative stress response genes or pathogenesis genes. In this work, we report the functional characterization of C. difficile Fur and describe an additional oxidation sensing Fur-mediated mechanism independent of iron, which affects Fur DNA-binding. Using electrophoretic mobility shift assays, we show that Fur binding to the promoters of fur, feoA and fldX genes, identified as iron and Fur-regulated genes in vivo, is specific and does not require co-regulator metal under reducing conditions. Fur treatment with H2O2 produces dose-dependent soluble high molecular weight species unable to bind to target promoters. Moreover, Fur oligomers are dithiotreitol sensitive, highlighting the importance of some interchain disulfide bond(s) for Fur oligomerization, and hence for activity. Additionally, the physiological electron transport chain NADPH-thioredoxin reductase/thioredoxin from Escherichia coli reduces inactive oligomerized C. difficile Fur that recovers activity. In conjunction with available transcriptomic data, these results suggest a previously underappreciated complexity in the control of some members of the Fur regulon that is based on Fur redox properties and might be fundamental for the adaptive response of C. difficile during infection.
Collapse
Affiliation(s)
- Ángela Fernández-Otal
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Jorge Guío
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - M Luisa Peleato
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - María F Fillat
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
- CIBERehd, Madrid, Spain
| | - M Teresa Bes
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| |
Collapse
|
2
|
Zhong H, Nyvltova E, Barrientos A. Reverse Thiol Trapping Approach to Assess the Thiol Status of Metal-Binding Mitochondrial Proteins. Methods Mol Biol 2024; 2839:249-259. [PMID: 39008259 PMCID: PMC11524414 DOI: 10.1007/978-1-0716-4043-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eva Nyvltova
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Abstract
The ferric uptake regulator (Fur) protein is the founding member of the FUR superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur), manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended array of bound protein. Elevated FUR levels due to changes in cell physiology increase DNA occupancy and may also kinetically facilitate protein dissociation. Interactions between FUR proteins and other regulators are commonplace, often including cooperative and competitive DNA-binding interactions within the regulatory region. Further, there are many emerging examples of allosteric regulators that interact directly with FUR family proteins. Here, we focus on newly uncovered examples of allosteric regulation by diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio parahaemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small molecules and metal complexes may also serve as regulatory ligands, with examples including heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena FurA. How these protein-protein and protein-ligand interactions act in conjunction with regulatory metal ions to facilitate signal integration is an active area of investigation.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Gupta S, Paul M, Sahu SK. Zymography assisted quick purification, characterization and inhibition analysis of K. pneumoniae alkaline phosphatase by mercury and thiohydroxyal compounds. Protein Expr Purif 2022; 201:106185. [PMID: 36195295 DOI: 10.1016/j.pep.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
In-gel hydrolysis of para-nitrophenyl phosphate (p-NPP) to yellow colored para-nitrophenol was used to locate precisely the K. pneumoniae alkaline phosphatase (Kp-ALKP) on 7% native PAGE. Subsequent removal of the yellow-stained band and electroelution yielded a 54 kDa, Kp-ALKP with Km, Vmax and kcat values of (0.7 ± 0.02) mM, (80 ± 4.5) μmol min-1 and (39.2 ± 2.2) × 104 s-1 respectively for p-NPP. Kp-ALKP was optimally active at 70 °C and pH 7.2 that was activated by Mg2+, Ca2+, Co2+ and inhibited by EDTA, PO4, Pb2+, Cu2+ and Hg2+. The enzyme was trypsin resistant and retained 75% activity in presence of 10 mM PO4 and 65% activity at 3 mM Hg2+ showing it's PO43- irrepressibility and Hg2+-tolerance. Molecular dynamics simulation revealed increased structural stability of Kp-ALKP at 70 °C that accounts for it's optimal temperature. Zymography revealed that both DTT and β-mercaptoethanol induced activity loss accompanied by mobility retardation of Kp-ALKP on 7% native PAGE. These results and in Silico analysis shows that both DTT and βME reduce the C308-C358 disulfide bond, leading to an open conformation of the enzyme. However, Hg2+ had negligible effect on the in-gel mobility of Kp-ALKP indicating it's plausible non-covalent interaction with surface-accessible amino-acids without significant conformational change. For the first time our study reveals the zymography as an easy, inexpensive and convenient tool for quick purification, characterization and conformational analysis of K. pneumoniae alkaline phosphatase.
Collapse
Affiliation(s)
- Sangam Gupta
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India.
| |
Collapse
|
5
|
Yang RS, Xu F, Wang YM, Zhong WS, Dong L, Shi YN, Tang TJ, Sheng HJ, Jackson D, Yang F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. NATURE PLANTS 2021; 7:1589-1601. [PMID: 34907313 DOI: 10.1038/s41477-021-01029-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Glutaredoxins (GRXs) are small oxidoreductases that can modify target protein activities through control of the redox (reduction/oxidation) state by reducing or glutathionylating disulfide bridges. Although CC-type GRXs are plant specific and play important roles in many processes, the mechanisms by which they modulate the activity of target proteins in vivo are unknown. In this study, we show that a maize CC-type GRX, MALE STERILE CONVERTED ANTHER1 (MSCA1), acts redundantly with two paralogues, ZmGRX2 and ZmGRX5, to modify the redox state and the activity of its putative target, the TGA transcription factor FASCIATED EAR4 (FEA4) that acts as a negative regulator of inflorescence meristem development. We used CRISPR-Cas9 to create a GRX triple knockout, resulting in severe suppression of meristem, ear and tassel growth and reduced plant height. We further show that GRXs regulate the redox state, DNA accessibility and transcriptional activities of FEA4, which acts downstream of MSCA1 and its paralogues to control inflorescence development. Our findings reveal the function of GRXs in meristem development, and also provide direct evidence for GRX-mediated redox modification of target proteins in plants.
Collapse
Affiliation(s)
- R S Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - F Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Y M Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - W S Zhong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - L Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Y N Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - T J Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - H J Sheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - D Jackson
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - F Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Fassler R, Zuily L, Lahrach N, Ilbert M, Reichmann D. The Central Role of Redox-Regulated Switch Proteins in Bacteria. Front Mol Biosci 2021; 8:706039. [PMID: 34277710 PMCID: PMC8282892 DOI: 10.3389/fmolb.2021.706039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Zuily
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Marianne Ilbert
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Thioredoxin Dependent Changes in the Redox States of FurA from Anabaena sp. PCC 7120. Antioxidants (Basel) 2021; 10:antiox10060913. [PMID: 34199999 PMCID: PMC8229018 DOI: 10.3390/antiox10060913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
FurA is a multifunctional regulator in cyanobacteria that contains five cysteines, four of them arranged into two CXXC motifs. Lack of a structural zinc ion enables FurA to develop disulfide reductase activity. In vivo, FurA displays several redox isoforms, and the oxidation state of its cysteines determines its activity as regulator and its ability to bind different metabolites. Because of the relationship between FurA and the control of genes involved in oxidative stress defense and photosynthetic metabolism, we sought to investigate the role of type m thioredoxin TrxA as a potential redox partner mediating dithiol-disulfide exchange reactions necessary to facilitate the interaction of FurA with its different ligands. Both in vitro cross-linking assays and in vivo two-hybrid studies confirmed the interaction between FurA and TrxA. Light to dark transitions resulted in reversible oxidation of a fraction of the regulator present in Anabaena sp. PCC7120. Reconstitution of an electron transport chain using E. coli NADPH-thioredoxin-reductase followed by alkylation of FurA reduced cysteines evidenced the ability of TrxA to reduce FurA. Furthermore, the use of site-directed mutants allowed us to propose a plausible mechanism for FurA reduction. These results point to TrxA as one of the redox partners that modulates FurA performance.
Collapse
|
8
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
9
|
Nam D, Matsumoto Y, Uchida T, O'Brian MR, Ishimori K. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). J Biol Chem 2020; 295:11316-11325. [PMID: 32554810 DOI: 10.1074/jbc.ra119.011855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
The transcription factor iron response regulator (Irr) is a key regulator of iron homeostasis in the nitrogen-fixating bacterium Bradyrhizobium japonicum Irr acts by binding to target genes, including the iron control element (ICE), and is degraded in response to heme binding. Here, we examined this binding activity using fluorescence anisotropy with a 6-carboxyfluorescein-labeled ICE-like oligomer (FAM-ICE). In the presence of Mn2+, Irr addition increased the fluorescence anisotropy, corresponding to formation of the Irr-ICE complex. The addition of EDTA to the Irr-ICE complex reduced fluorescence anisotropy, but fluorescence was recovered after Mn2+ addition, indicating that Mn2+ binding is a prerequisite for complex formation. Binding activity toward ICE was lost upon introduction of substitutions in a His-cluster region of Irr, revealing that Mn2+ binds to this region. We observed that the His-cluster region is also the heme binding site; results from fluorescence anisotropy and electrophoretic mobility shift analyses disclosed that the addition of a half-equivalent of heme dissociates Irr from ICE, likely because of Mn2+ release due to heme binding. We hypothesized that heme binding to another heme binding site, Cys-29, would also inhibit the formation of the Irr-ICE complex because it is proximal to the ICE binding site, which was supported by the loss of ICE binding activity in a Cys-29-mutated Irr. These results indicate that Irr requires Mn2+ binding to form the Irr-ICE complex and that the addition of heme dissociates Irr from ICE by replacing Mn2+ with heme or by heme binding to Cys-29.
Collapse
Affiliation(s)
- Dayeon Nam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuki Matsumoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Guío J, Sarasa-Buisan C, Velázquez-Campoy A, Bes MT, Fillat MF, Peleato ML, Sevilla E. 2-oxoglutarate modulates the affinity of FurA for the ntcA promoter in Anabaena sp. PCC 7120. FEBS Lett 2019; 594:278-289. [PMID: 31538336 DOI: 10.1002/1873-3468.13610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/11/2022]
Abstract
2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins.
Collapse
Affiliation(s)
- Jorge Guío
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - María Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| |
Collapse
|
11
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
12
|
Imber M, Huyen NTT, Pietrzyk-Brzezinska AJ, Loi VV, Hillion M, Bernhardt J, Thärichen L, Kolšek K, Saleh M, Hamilton CJ, Adrian L, Gräter F, Wahl MC, Antelmann H. Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress. Antioxid Redox Signal 2018; 28:410-430. [PMID: 27967218 PMCID: PMC5791933 DOI: 10.1089/ars.2016.6897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. RESULTS The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410-430.
Collapse
Affiliation(s)
- Marcel Imber
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Nguyen Thi Thu Huyen
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | | | - Vu Van Loi
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Melanie Hillion
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Jörg Bernhardt
- 3 Institute for Microbiology , Ernst-Moritz-Arndt-Universität of Greifswald, Greifswald, Germany
| | - Lena Thärichen
- 4 Molecular Biomechanics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Heidelberg, Germany .,5 Heidelberg Institute of Theoretical Studies , Heidelberg, Germany
| | - Katra Kolšek
- 5 Heidelberg Institute of Theoretical Studies , Heidelberg, Germany
| | - Malek Saleh
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Chris J Hamilton
- 6 School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Lorenz Adrian
- 7 Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ , Leipzig, Germany
| | - Frauke Gräter
- 4 Molecular Biomechanics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Heidelberg, Germany .,5 Heidelberg Institute of Theoretical Studies , Heidelberg, Germany
| | - Markus C Wahl
- 2 Laboratory of Structural Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Haike Antelmann
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
13
|
Molecular basis for the integration of environmental signals by FurB from Anabaena sp. PCC 7120. Biochem J 2018; 475:151-168. [DOI: 10.1042/bcj20170692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
FUR (Ferric uptake regulator) proteins are among the most important families of transcriptional regulators in prokaryotes, often behaving as global regulators. In the cyanobacterium Anabaena PCC 7120, FurB (Zur, Zinc uptake regulator) controls zinc and redox homeostasis through the repression of target genes in a zinc-dependent manner. In vitro, non-specific binding of FurB to DNA elicits protection against oxidative damage and avoids cleavage by deoxyribonuclease I. The present study provides, for the first time, evidence of the influence of redox environment in the interaction of FurB with regulatory zinc and its consequences in FurB–DNA-binding affinity. Calorimetry studies showed that, in addition to one structural Zn(II), FurB is able to bind two additional Zn(II) per monomer and demonstrated the implication of cysteine C93 in regulatory Zn(II) coordination. The interaction of FurB with the second regulatory zinc occurred only under reducing conditions. While non-specific FurB–DNA interaction is Zn(II)-independent, the optimal binding of FurB to target promoters required loading of two regulatory zinc ions. Those results combined with site-directed mutagenesis and gel-shift assays evidenced that the redox state of cysteine C93 conditions the binding of the second regulatory Zn(II) and, in turn, modulates the affinity for a specific DNA target. Furthermore, differential spectroscopy studies showed that cysteine C93 could also be involved in heme coordination by FurB, either as a direct ligand or being located near the binding site. The results indicate that besides controlling zinc homeostasis, FurB could work as a redox-sensing protein probably modifying its zinc and DNA-binding abilities depending upon environmental conditions.
Collapse
|
14
|
Tailor V, Ballal A. Novel molecular insights into the function and the antioxidative stress response of a Peroxiredoxin Q protein from cyanobacteria. Free Radic Biol Med 2017; 106:278-287. [PMID: 28159708 DOI: 10.1016/j.freeradbiomed.2017.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
The Peroxiredoxin Q (PrxQ) proteins are thiol-based peroxidases that are important for maintaining redox homeostasis in several organisms. Activity of PrxQs is mediated by two cysteines, peroxidatic (Cp) and resolving (Cr), in association with a reducing partner. A PrxQ, Alr3183, from the cyanobacterium, Anabaena PCC 7120, was characterized in this study. Alr3183, which required thioredoxin A (TrxA) for peroxidase activity, was an intramolecular disulfide bond-containing monomeric protein. However, Alr3183 lacking Cp (Alr3183C46S) or Cr (Alr3183C51S) formed intermolecular disulfide linkages and was dimeric. Alr3183C46S was completely inactive, while Alr3183C51S required higher concentration of TrxA for peroxidase activity. Surface plasmon resonance analysis showed that unlike Alr3183 or Alr3183C46S, Alr3183C51S bound rather poorly to TrxA. Also, compared to the oxidized protein, the DTT-treated (reduced) Alr3183 displayed decreased interaction with TrxA. In vivo, Alr3183 was found to be induced in response to γ-radiation. On exposure to H2O2, Anabaena strain over-expressing Alr3183 showed reduced formation of ROS, intact photosynthetic pigments and consequently better survival than the wild-type, whereas overproduction of Alr3183C46S did not provide any protection. Significantly, this study (1) reveals the importance of Cr for interaction with thioredoxins and (2) demonstrates that over-expression of PrxQs can protect cyanobacteria from oxidative stresses.
Collapse
Affiliation(s)
- Vijay Tailor
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
15
|
Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence. G3-GENES GENOMES GENETICS 2016; 6:3455-3465. [PMID: 27587298 PMCID: PMC5100844 DOI: 10.1534/g3.116.033969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution.
Collapse
|
16
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|