1
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Luo K, Wang Z, Zhuang K, Yuan S, Liu F, Liu A. Suberoylanilide hydroxamic acid suppresses axonal damage and neurological dysfunction after subarachnoid hemorrhage via the HDAC1/HSP70/TDP-43 axis. Exp Mol Med 2022; 54:1423-1433. [PMID: 35501375 DOI: 10.1038/s12276-022-00761-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Increased focus has been placed on the role of histone deacetylase inhibitors as crucial players in subarachnoid hemorrhage (SAH) progression. Therefore, this study was designed to expand the understanding of SAH by exploring the downstream mechanism of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in SAH. The expression of TDP-43 in patients with SAH and rat models of SAH was measured. Then, western blot analysis, immunofluorescence staining, and transmission electron microscope were used to investigate the in vitro effect of TDP-43 on a neuronal cell model of SAH established by oxyhemoglobin treatment. Immunofluorescence staining and coimmunoprecipitation assays were conducted to explore the relationship among histone deacetylase 1 (HDAC1), heat shock protein 70 (HSP70), and TDP-43. Furthermore, the in vivo effect of HDAC1 on SAH was investigated in rat models of SAH established by endovascular perforation. High expression of TDP-43 in the cerebrospinal fluid of patients with SAH and brain tissues of rat models of SAH was observed, and TDP-43 accumulation in the cytoplasm and the formation of inclusion bodies were responsible for axonal damage, abnormal nuclear membrane morphology, and apoptosis in neurons. TDP-43 degradation was promoted by the HDAC1 inhibitor SAHA via the acetylation of HSP70, alleviating SAH, and this effect was verified in vivo in rat models. In conclusion, SAHA relieved axonal damage and neurological dysfunction after SAH via the HSP70 acetylation-induced degradation of TDP-43, highlighting a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Kui Luo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Shishan Yuan
- Medical College, Hunan Normal University, 410000, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China. .,Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, China.
| | - Aihua Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China. .,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
| |
Collapse
|
3
|
Feng J, Ren J, Yang Q, Liao L, Cui L, Gong Y, Sun S. Metabolic gene signature for predicting breast cancer recurrence using transcriptome analysis. Future Oncol 2021; 17:71-80. [PMID: 33397130 DOI: 10.2217/fon-2020-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The study aimed at identifying a metabolic gene signature for stratifying the risk of recurrence in breast cancer. Materials & methods: The data of patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The limma package was used to identify differentially expressed metabolic genes, and a metabolic gene signature was constructed. Results: A five-gene metabolic signature was established that demonstrated satisfactory accuracy and predictive power in both training and validation cohorts. Also, a nomogram for predicting recurrence-free survival was established using a combination of the metabolism gene risk score and the clinicopathological features. Conclusions: The proposed metabolic gene signature and nomogram have a significant prognostic value and may improve the recurrence risk stratification for breast cancer patients.
Collapse
Affiliation(s)
- Juan Feng
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qingfeng Yang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Lingxia Liao
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Le Cui
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shengrong Sun
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
4
|
Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg Chem 2019; 91:103184. [PMID: 31408831 DOI: 10.1016/j.bioorg.2019.103184] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a heterogeneous disease, is the most frequently diagnosed cancer and the second leading cause of cancer-related death among women worldwide. Recently, epigenetic abnormalities have emerged as an important hallmark of cancer development and progression. Given that histone deacetylases (HDACs) are crucial to chromatin remodeling and epigenetics, their inhibitors have become promising potential anticancer drugs for research. Here we reviewed the mechanism and classification of histone deacetylases (HDACs), association between HDACs and breast cancer, classification and structure-activity relationship (SAR) of HDACIs, pharmacokinetic and toxicological properties of the HDACIs, and registered clinical studies for breast cancer treatment. In conclusion, HDACIs have shown desirable effects on breast cancer, especially when they are used in combination with other anticancer agents. In the coming future, more multicenter and randomized Phase III studies are expected to be conducted pushing promising new therapies closer to the market. In addition, the design and synthesis of novel HDACIs are also needed.
Collapse
|
5
|
Ge W, Liu Z, Sun Y, Wang T, Guo H, Chen X, Li S, Wang M, Chen Y, Ding Y, Zhang Q. Design and synthesis of parthenolide-SAHA hybrids for intervention of drug-resistant acute myeloid leukemia. Bioorg Chem 2019; 87:699-713. [DOI: 10.1016/j.bioorg.2019.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
6
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
7
|
Noberini R, Osti D, Miccolo C, Richichi C, Lupia M, Corleone G, Hong SP, Colombo P, Pollo B, Fornasari L, Pruneri G, Magnani L, Cavallaro U, Chiocca S, Minucci S, Pelicci G, Bonaldi T. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Res 2018; 46:3817-3832. [PMID: 29618087 PMCID: PMC5934616 DOI: 10.1093/nar/gky224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan 20139, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Claudia Miccolo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Sung-Pil Hong
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Bianca Pollo
- Department of Neuropathology, IRCCS Foundation Neurological Institute 'C. Besta', Milan 20133, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Giancarlo Pruneri
- Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milano 20141, Italy
- School of Medicine, University of Milan, Milan 20122, Italy
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- New Drugs Program, European Institute of Oncology, Milan 20139, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- Department of Translational Medicine, Piemonte Orientale University 'Amedeo Avogadro', Novara 28100, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
8
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Grabarska A, Łuszczki JJ, Nowosadzka E, Gumbarewicz E, Jeleniewicz W, Dmoszyńska-Graniczka M, Kowalczuk K, Kupisz K, Polberg K, Stepulak A. Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells. J Cancer 2017; 8:19-28. [PMID: 28123594 PMCID: PMC5264036 DOI: 10.7150/jca.16655] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 01/04/2023] Open
Abstract
Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Ewa Nowosadzka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | | | - Krystyna Kowalczuk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Krzysztof Kupisz
- Department of Otolaryngology and Head and Neck Surgery, Specialist District Hospital, Lublin, Poland
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland.; Department of Otolaryngology, MSWiA Hospital, Poland
| |
Collapse
|
10
|
Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genet 2016; 12:e1005931. [PMID: 26978032 PMCID: PMC4792400 DOI: 10.1371/journal.pgen.1005931] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment. Tumor heterogeneity exists in many human cancers, and it has been shown that it can play a role in tumor progression. Indeed, cell diversity may be critically important when tumors experience selective pressures, like nutrient deprivation, hypoxia, chemotherapy. PKA, through incompletely understood mechanisms, controls several cellular processes like cell growth, cell differentiation, cell metabolism, cell migration and, as more recently observed, also cancer progression. In this work, we show that activation of PKA induces the ability of a cancer cell sub-population to survive under strong stress conditions namely nutrient deprivation and cell detachment. Indeed, PKA activation in these cells results in autophagy induction, and at the same time, in activation of glutamine metabolism and Src kinase. Importantly, blocking directly the PKA pathway, as well as the autophagy, the glutamine metabolism or the Src pathway by inhibitory drugs, almost completely prevents cell growth of this sub-population of resistant cancer cells. These results suggest that drugs, targeting especially PKA pathway as well as downstream processes like autophagy, glutamine metabolism and Src signaling, may specifically inhibit cancer cells ability to survive under selective pressure favoring cancer resistance.
Collapse
|
11
|
Ouyang J, Sun Y, Li W, Zhang W, Wang D, Liu X, Lin Y, Lian B, Xie L. dbPHCC: a database of prognostic biomarkers for hepatocellular carcinoma that provides online prognostic modeling. Biochim Biophys Acta Gen Subj 2016; 1860:2688-95. [PMID: 26940364 DOI: 10.1016/j.bbagen.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a poor prognosis. For decades, more and more biomarkers were found to effect on HCC prognosis, but these studies were scattered and there were no unified identifiers. Therefore, we built the database of prognostic biomarkers and models for hepatocellular carcinoma (dbPHCC). METHODS dbPHCC focuses on biomarkers which were related to HCC prognosis by traditional experiments rather than high-throughput technology. All of the prognostic biomarkers came from literatures issued during 2002 to 2014 in PubMed and were manually selected. dbPHCC collects comprehensive information of candidate biomarkers and HCC prognosis. RESULTS dbPHCC mainly contains 567 biomarkers: 323 proteins, 154 genes, and 90 microRNAs. For each biomarker, the reference information, experimental conditions, and prognostic information are shown. Based on two available patient cohort data sets, an exemplified prognostic model was constructed using 15 phosphotransferases in dbPHCC. The web interface does not only provide a full range of browsing and searching, but also provides online analysis tools. dbPHCC is available at http://lifecenter.sgst.cn/dbphcc/ CONCLUSIONS dbPHCC provides a comprehensive and convenient search and analysis platform for HCC prognosis research. GENERAL SIGNIFICANCE dbPHCC is the first database to focus on experimentally verified individual biomarkers, which are related to HCC prognosis. Prognostic markers in dbPHCC have the potential to be therapeutic drug targets and may help in designing new treatments to improve survival of HCC patients. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Jian Ouyang
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Sun
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wei Li
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Wen Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of People Libration Army General Hospital, Beijing 100048, China
| | - Dandan Wang
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangqiong Liu
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Lin
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baofeng Lian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China; Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200240, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| |
Collapse
|