1
|
Abstract
Targeted modulation of a dynamic interplay between transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), is of paramount importance in maintaining redox, metabolic, and protein homeostasis and regulating inflammation responses. Indeed, inducible NRF2 activation promotes cytoprotective mechanisms against many immune, neurodegenerative, and metabolic disorders with oxidative stress and inflammation as underlying pathological features. In this ARS Forum, five state-of-the-art reviews and two original research communications report on canonical and newly discovered molecular mechanisms by which the NRF2-KEAP1 axis controls fundamental cell life or death decisions and exerts biological functions under environmental and endogenous stress conditions. Although the use of NRF2 activators represents a promising pharmacological strategy to regain and maintain homeostasis, challenges regarding their double-edged character, target specificity, pharmacodynamic properties, efficacy, and safety must be critically considered. More translational studies are warranted before NRF2 agonists (inducers or enhancers) become an integral part of our therapeutic armamentarium. Antioxid. Redox Signal. 40, 632-635.
Collapse
Affiliation(s)
- Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Gatbonton-Schwager T, Yagishita Y, Joshi T, Wakabayashi N, Srinivasan H, Suzuki T, Yamamoto M, Kensler TW. A Point Mutation at C151 of Keap1 of Mice Abrogates NRF2 Signaling, Cytoprotection in Vitro, and Hepatoprotection in Vivo by Bardoxolone Methyl (CDDO-Me). Mol Pharmacol 2023; 104:51-61. [PMID: 37188495 PMCID: PMC10353147 DOI: 10.1124/molpharm.123.000671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Bardoxolone methyl (CDDO-Me) is an oleanane triterpenoid in late-stage clinical development for the treatment of patients with diabetic kidney disease. Preclinical studies in rodents demonstrate the efficacy of triterpenoids against carcinogenesis and other diseases, including renal ischemia-reperfusion injury, hyperoxia-induced acute lung injury, and immune hepatitis. Genetic disruption of Nrf2 abrogates protection by triterpenoids, suggesting that induction of the NRF2 pathway may drive this protection. Herein, we examined the effect of a point mutation (C151S) in KEAP1, a repressor of NRF2 signaling, at cysteine 151 in mouse embryo fibroblasts and mouse liver. Induction of target gene transcripts and enzyme activity by CDDO-Me was lost in C151S mutant fibroblasts compared with wild-type. Protection against menadione toxicity was also nullified in the mutant fibroblasts. In mouse liver, CDDO-Me evoked the nuclear translocation of NRF2, followed by increased transcript and activity levels of a prototypic target gene, Nqo1, in wild-type, but not C151S mutant, mice. To test the role of KEAP1 Cys151 in governing the broader pharmacodynamic action of CDDO-Me, wild-type and C151S mutant mice were challenged with concanavalin A to induce immune hepatitis. Strong protection was seen in wild-type but not C151S mutant mice. RNA-seq analysis of mouse liver from wild-type, C151S mutant, and Nrf2-knockout mice revealed a vigorous response of the NRF2 transcriptome in wild-type, but in neither C151S mutant nor Nrf2-knockout, mice. Activation of "off-target" pathways by CDDO were not observed. These data highlight the singular importance of the KEAP1 cysteine 151 sensor for activation of NRF2 signaling by CDDO-Me. SIGNIFICANCE STATEMENT: KEAP1 serves as a key sensor for induction of the cytoprotective signaling pathway driven by the transcription factor NRF2. Mutation of a single cysteine (C151) in KEAP1 abrogates the induction of NRF2 signaling and its downstream cytoprotective actions in vitro and in vivo by bardoxolone methyl (CDDO-Me), a drug in late-stage clinical development. Further, at these bioeffective concentrations/doses, activation of "off-target" pathways by CDDO-Me are not observed, highlighting the singular importance of NRF2 in its mode of action.
Collapse
Affiliation(s)
- Tonibelle Gatbonton-Schwager
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Yoko Yagishita
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Tanvi Joshi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Nobunao Wakabayashi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Harini Srinivasan
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Takafumi Suzuki
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Masayuki Yamamoto
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Thomas W Kensler
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| |
Collapse
|