1
|
Izenberg NR, Gentry DM, Smith DJ, Gilmore MS, Grinspoon DH, Bullock MA, Boston PJ, Słowik GP. The Venus Life Equation. ASTROBIOLOGY 2021; 21:1305-1315. [PMID: 33512272 DOI: 10.1089/ast.2020.2326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ancient Venus and Earth may have been similar in crucial ways for the development of life, such as liquid water oceans, land-ocean interfaces, favorable chemical ingredients, and energy pathways. If life ever developed on, or was transported to, early Venus from elsewhere, it might have thrived, expanded, and then survived the changes that have led to an inhospitable surface on Venus today. The Venus cloud layer may provide a refugium for extant life that persisted from an earlier more habitable surface environment. We introduce the Venus Life Equation (VLE)-a theory and evidence-based approach to calculate the probability of extant life on Venus, L, using three primary factors of life: Origination, Robustness, and Continuity, or L = O · R · C. We evaluate each of these factors using our current understanding of Earth and Venus environmental conditions from the Archean to the present. We find that the probability of origination of life on Venus would be similar to that of Earth, and argue that the other factors should be nonzero, comparable with other promising astrobiological targets in the solar system. The VLE also identifies poorly understood aspects of Venus that can be addressed by direct observations with future exploration missions.
Collapse
Affiliation(s)
- Noam R Izenberg
- Earth and Environmental Sciences Department, Johns Hopkins University Applied Physics Laboratory (JHUAPL), Laurel, Maryland, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Martha S Gilmore
- Earth and Environmental Sciences Department, Wesleyan University, Middletown, Connecticut, USA
| | | | | | | | - Grzegorz P Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
2
|
Cheptsov VS, Belov AA, Vorobyova EA, Pavlov AK, Lomasov VN. Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions. Microorganisms 2021; 9:198. [PMID: 33477915 PMCID: PMC7833375 DOI: 10.3390/microorganisms9010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (-50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance.
Collapse
Affiliation(s)
- Vladimir S. Cheptsov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str., 84/32, 117997 Moscow, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Andrey A. Belov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Elena A. Vorobyova
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Anatoli K. Pavlov
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Polytechnicheskaya Street, 26, 194021 Saint-Petersburg, Russia;
| | - Vladimir N. Lomasov
- STC “Nuclear Physics”, Peter the Great St. Petersburg State Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia;
| |
Collapse
|
3
|
Acevedo-Rocha CG, Schulze-Makuch D. How Many Biochemistries Are Available To Build a Cell? Chembiochem 2015; 16:2137-9. [DOI: 10.1002/cbic.201500379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Terrestrische Mikrobiologie; Small Prokaryotic RNA Biology Group; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Landes-Offensive zur Entwicklung Wissenschafltich-Ökonomischer Exzellenz (LOEWE); Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Philipps-Universität Marburg; Hans-Meerwein-Strasse 6 35042 Marburg Germany
| | - Dirk Schulze-Makuch
- School of the Environment; Washington State University; Webster Hall 1148 Pullman WA 99163 USA
- Beyond Center; Arizona State University; P. O. Box 871504 Tempe AZ 85827 USA
- Center for Astronomy and Astrophysics; Technical University Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| |
Collapse
|
4
|
Abstract
The biological record suggests that life on Earth arose as soon as conditions were favorable, which indicates that life either originated quickly, or arrived from elsewhere to seed Earth. Experimental research under the theme of “astrobiology” has produced data that some view as strong evidence for the second possibility, known as the panspermia hypothesis. While it is not unreasonable to consider the possibility that Earth’s life originated elsewhere and potentially much earlier, we conclude that the current literature offers no definitive evidence to support this hypothesis.
Chladni’s view, that they fall from the skies, pronounced in 1795, was ridiculed by the learned men of the times. (Rachel, 1881) Evidence of life on Mars, even if only in the distant past, would finally answer the age-old question of whether living beings on Earth are alone in the universe. The magnitude of such a discovery is illustrated by President Bill Clinton’s appearance at a 1996 press conference to announce that proof had been found at last. A meteorite chipped from the surface of the Red Planet some 15 million years ago appeared to contain the fossil remains of tiny life-forms that indicated life had once existed on Mars. (Young and Martel, 2010)
Collapse
|
5
|
Crawford IA. Astrobiological benefits of human space exploration. ASTROBIOLOGY 2010; 10:577-587. [PMID: 20735249 DOI: 10.1089/ast.2010.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.
Collapse
Affiliation(s)
- Ian A Crawford
- Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, United Kingdom.
| |
Collapse
|
6
|
Fink W, Datta A, Dohm JM, Tarbell MA, Jobling FM, Furfaro R, Kargel JS, Schulze-Makuch D, Baker VR. Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance. ACTA ACUST UNITED AC 2008. [DOI: 10.1109/aero.2008.4526422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Bottos EM, Vincent WF, Greer CW, Whyte LG. Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 2008; 10:950-66. [PMID: 18215157 DOI: 10.1111/j.1462-2920.2007.01516.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold.
Collapse
Affiliation(s)
- Eric M Bottos
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
8
|
Hock AN, Cabrol NA, Dohm JM, Piatek J, Warren-Rhodes K, Weinstein S, Wettergreen DS, Grin EA, Moersch J, Cockell CS, Coppin P, Ernst L, Fisher G, Hardgrove C, Marinangeli L, Minkley E, Ori GG, Waggoner A, Wyatt M, Smith T, Thompson D, Wagner M, Jonak D, Stubbs K, Thomas G, Pudenz E, Glasgow J. Life in the Atacama: A scoring system for habitability and the robotic exploration for life. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew N. Hock
- Department of Earth and Space Sciences; University of California, Los Angeles; Los Angeles California USA
| | - Nathalie A. Cabrol
- Space Science Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - James M. Dohm
- Hydrology and Water Resources Department; University of Arizona; Tucson Arizona USA
| | - Jennifer Piatek
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Kim Warren-Rhodes
- Space Science Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - Shmuel Weinstein
- Molecular Biosensor and Imaging Center; Mellon Institute, Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | | | - Edmond A. Grin
- Space Science Division; NASA Ames Research Center; Moffett Field California USA
- SETI Institute; Mountain View California USA
| | - Jeffrey Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Charles S. Cockell
- Planetary and Space Sciences Research Institute; Open University; Milton Keynes UK
| | - Peter Coppin
- Eventscope, Remote Experience and Learning Laboratory, Studio for Creative Inquiry; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Lauren Ernst
- Molecular Biosensor and Imaging Center; Mellon Institute, Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Gregory Fisher
- Molecular Biosensor and Imaging Center; Mellon Institute, Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Craig Hardgrove
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | | | - Edwin Minkley
- Molecular Biosensor and Imaging Center; Mellon Institute, Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | | | - Alan Waggoner
- Molecular Biosensor and Imaging Center; Mellon Institute, Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Mike Wyatt
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Trey Smith
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - David Thompson
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Michael Wagner
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Dominic Jonak
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Kristen Stubbs
- Robotics Institute; Carnegie Mellon University; Pittsburgh Pennsylvania USA
| | - Geb Thomas
- GROK Laboratory; University of Iowa; Iowa City Iowa USA
| | - Erin Pudenz
- GROK Laboratory; University of Iowa; Iowa City Iowa USA
| | | |
Collapse
|
9
|
Gronstal A, Cockell CS, Perino MA, Bittner T, Clacey E, Clark O, Ingold O, Alves de Oliveira C, Wathiong S. Lunar astrobiology: a review and suggested laboratory equipment. ASTROBIOLOGY 2007; 7:767-782. [PMID: 17963476 DOI: 10.1089/ast.2006.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In October of 2005, the European Space Agency (ESA) and Alcatel Alenia Spazio released a "call to academia for innovative concepts and technologies for lunar exploration." In recent years, interest in lunar exploration has increased in numerous space programs around the globe, and the purpose of our study, in response to the ESA call, was to draw on the expertise of researchers and university students to examine science questions and technologies that could support human astrobiology activity on the Moon. In this mini review, we discuss astrobiology science questions of importance for a human presence on the surface of the Moon and we provide a summary of key instrumentation requirements to support a lunar astrobiology laboratory.
Collapse
Affiliation(s)
- Aaron Gronstal
- Planetary and Space Sciences Research Institute, Open University, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Muller AWJ, Schulze-Makuch D. Thermal energy and the origin of life. ORIGINS LIFE EVOL B 2006; 36:177-89. [PMID: 16642267 DOI: 10.1007/s11084-005-9003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/20/2005] [Indexed: 10/24/2022]
Abstract
Life has evolved on Earth with electromagnetic radiation (light), fermentable organic molecules, and oxidizable chemicals as sources of energy. Biological use of thermal energy has not been observed although heat, and the thermal gradients required to convert it into free energy, are ubiquitous and were even more abundant at the time of the origin of life on Earth. Nevertheless, Earth-organisms sense thermal energy, and in suitable environments may have gained the capability to use it as energy source. It has been proposed that the first organisms obtained their energy by a first protein named pF(1) that worked on a thermal variation of the binding change mechanism of today's ATP sythase enzyme. Organisms using thermosynthesis may still live where light or chemical energy sources are not available. Possible suitable examples are subsurface environments on Earth and in the outer Solar System, in particular the subsurface oceans of the icy satellites of Jupiter and Saturn.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA
| | | |
Collapse
|
11
|
Schulze-Makuch D, Irwin LN. The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 2006; 93:155-72. [PMID: 16525788 DOI: 10.1007/s00114-005-0078-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/12/2005] [Indexed: 11/29/2022]
Abstract
The nature of life on Earth provides a singular example of carbon-based, water-borne, photosynthesis-driven biology. Within our understanding of chemistry and the physical laws governing the universe, however, lies the possibility that alien life could be based on different chemistries, solvents, and energy sources from the one example provided by Terran biology. In this paper, we review some of these possibilities. Silanes may be used as functional analogs to carbon molecules in environments very different from Earth; solvents other than water may be compatible for life-supporting processes, especially in cold environments, and a variety of energy sources may be utilized, some of which have no Terran analog. We provide a detailed discussion of two possible habitats for alien life which are generally not considered as such: the lower cloud level of the Venusian atmosphere and Titan's surface environment.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA.
| | | |
Collapse
|