1
|
Cohen ZR, Todd ZR, Maibaum L, Catling DC, Black RA. Stabilization of Prebiotic Vesicles by Peptides Depends on Sequence and Chirality: A Mechanism for Selection of Protocell-Associated Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8971-8980. [PMID: 38629792 DOI: 10.1021/acs.langmuir.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.
Collapse
Affiliation(s)
- Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Zoe R Todd
- Department of Earth and Space Science, University of Washington, Seattle, Washington 98195, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David C Catling
- Department of Earth and Space Science, University of Washington, Seattle, Washington 98195, United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Zhao F, Akanuma S. Ancestral Sequence Reconstruction of the Ribosomal Protein uS8 and Reduction of Amino Acid Usage to a Smaller Alphabet. J Mol Evol 2023; 91:10-23. [PMID: 36396786 DOI: 10.1007/s00239-022-10078-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Understanding the origin and early evolution of proteins is important for unveiling how the RNA world developed into an RNA-protein world. Because the composition of organic molecules in the Earth's primitive environment was plausibly not as diverse as today, the number of different amino acids used in early protein synthesis is likely to be substantially less than the current 20 proteinogenic residues. In this study, we have explored the thermal stability and RNA binding of ancestral variants of the ribosomal protein uS8 constructed from a reduced-alphabet of amino acids. First, we built a phylogenetic tree based on the amino acid sequences of uS8 from multiple extant organisms and used the tree to infer two plausible amino acid sequences corresponding to the last bacterial common ancestor of uS8. Both ancestral proteins were thermally stable and bound to an RNA fragment. By eliminating individual amino acid letters and monitoring thermal stability and RNA binding in the resulting proteins, we reduced the size of the amino acid set constituting one of the ancestral proteins, eventually finding that convergent sequences consisting of 15- or 14-amino acid alphabets still folded into stable structures that bound to the RNA fragment. Furthermore, a simplified variant reconstructed from a 13-amino-acid alphabet retained affinity for the RNA fragment, although it lost conformational stability. Collectively, RNA-binding activity may be achieved with a subset of the current 20 amino acids, raising the possibility of a simpler composition of RNA-binding proteins in the earliest stage of protein evolution.
Collapse
Affiliation(s)
- Fangzheng Zhao
- Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
3
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
4
|
Hui Yan T, Mun SL, Lee JL, Lim SJ, Daud NA, Babji AS, Sarbini SR. Bioactive sialylated-mucin (SiaMuc) glycopeptide produced from enzymatic hydrolysis of edible swiftlet’s nest (ESN): degree of hydrolysis, nutritional bioavailability, and physicochemical characteristics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2029482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tan Hui Yan
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Malaysia
| | - Sue Lian Mun
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Jia Lin Lee
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Seng Joe Lim
- Innovation Centre for Confectionery Technology (Manis), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Centre for Innovation and Technology Transfer (Inovasi-ukm), Chancellery, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Aliah Daud
- Innovation Centre for Confectionery Technology (Manis), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Abdul Salam Babji
- Innovation Centre for Confectionery Technology (Manis), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Centre for Innovation and Technology Transfer (Inovasi-ukm), Chancellery, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Malaysia
- Halal Product Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang
| |
Collapse
|
5
|
Xue M, Black RA, Cohen ZR, Roehrich A, Drobny GP, Keller SL. Binding of Dipeptides to Fatty Acid Membranes Explains Their Colocalization in Protocells but Does Not Select for Them Relative to Unjoined Amino Acids. J Phys Chem B 2021; 125:7933-7939. [PMID: 34283913 DOI: 10.1021/acs.jpcb.1c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptides, which consist of two amino acids joined by a peptide bond, have been shown to have catalytic functions. This observation leads to fundamental questions relevant to the origin of life. How could peptides have become colocalized with the first protocells? Which structural features would have determined the association of amino acids and peptides with membranes? Could the association of dipeptides with protocell membranes have driven molecular evolution, favoring dipeptides over individual amino acids? Using pulsed-field gradient nuclear magnetic resonance, we find that several prebiotic amino acids and dipeptides bind to prebiotic membranes. For amino acids, the side chains and carboxylate contribute to the interaction. For dipeptides, the extent of binding is generally less than that of the constituent amino acids, implying that other mechanisms would be necessary to drive molecular evolution. Nevertheless, our results are consistent with a scheme in which the building blocks of the biological polymers colocalized with protocells prior to the emergence of RNA and proteins.
Collapse
Affiliation(s)
- Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Adrienne Roehrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|
6
|
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020; 59:4456-4462. [PMID: 33175508 PMCID: PMC7735664 DOI: 10.1021/acs.biochem.0c00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.
Collapse
Affiliation(s)
- Dragana Despotović
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Liam M. Longo
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Earth-Life
Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Einav Aharon
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Kahana
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Department
of Molecular Genetics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Tali Scherf
- Department
of Chemical Research Support, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, 10000 Zagreb, Croatia
| | - Dan S. Tawfik
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Kimura M, Akanuma S. Reconstruction and Characterization of Thermally Stable and Catalytically Active Proteins Comprising an Alphabet of ~ 13 Amino Acids. J Mol Evol 2020; 88:372-381. [PMID: 32201904 DOI: 10.1007/s00239-020-09938-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
While extant organisms synthesize proteins using approximately 20 kinds of genetically coded amino acids, the earliest protein synthesis system is likely to have been much simpler, utilizing a reduced set of amino acids. However, which types of building blocks were involved in primordial protein synthesis remains unclear. Herein, we reconstructed three convergent sequences of an ancestral nucleoside diphosphate kinase, each comprising a 10 amino acid "alphabet," and found that two of these variants folded into soluble and stable tertiary structures. Therefore, an alphabet consisting of 10 amino acids contains sufficient information for creating stable proteins. Furthermore, re-incorporation of a few more amino acid types into the active site of the 10 amino acid variants improved the catalytic activity, although the specific activity was not as high as that of extant proteins. Collectively, our results provide experimental support for the idea that robust protein scaffolds can be built with a subset of the current 20 amino acids that might have existed abundantly in the prebiotic environment, while the other amino acids, especially those with functional sidechains, evolved to contribute to efficient enzyme catalysis.
Collapse
Affiliation(s)
- Madoka Kimura
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
8
|
Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. Proc Natl Acad Sci U S A 2020; 117:5310-5318. [PMID: 32079722 DOI: 10.1073/pnas.1911742117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquity of phospho-ligands suggests that phosphate binding emerged at the earliest stage of protein evolution. To evaluate this hypothesis and unravel its details, we identified all phosphate-binding protein lineages in the Evolutionary Classification of Protein Domains database. We found at least 250 independent evolutionary lineages that bind small molecule cofactors and metabolites with phosphate moieties. For many lineages, phosphate binding emerged later as a niche functionality, but for the oldest protein lineages, phosphate binding was the founding function. Across some 4 billion y of protein evolution, side-chain binding, in which the phosphate moiety does not interact with the backbone at all, emerged most frequently. However, in the oldest lineages, and most characteristically in αβα sandwich enzyme domains, N-helix binding sites dominate, where the phosphate moiety sits atop the N terminus of an α-helix. This discrepancy is explained by the observation that N-helix binding is uniquely realized by short, contiguous sequences with reduced amino acid diversity, foremost Gly, Ser, and Thr. The latter two amino acids preferentially interact with both the backbone amide and the side-chain hydroxyl (bidentate interaction) to promote binding by short sequences. We conclude that the first αβα sandwich domains emerged from shorter and simpler polypeptides that bound phospho-ligands via N-helix sites.
Collapse
|
9
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
10
|
Cornell CE, Black RA, Xue M, Litz HE, Ramsay A, Gordon M, Mileant A, Cohen ZR, Williams JA, Lee KK, Drobny GP, Keller SL. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc Natl Acad Sci U S A 2019; 116:17239-17244. [PMID: 31405964 PMCID: PMC6717294 DOI: 10.1073/pnas.1900275116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements. We find that a set of unmodified, prebiotic amino acids binds to prebiotic fatty acid membranes and that a subset stabilizes membranes in the presence of salt and Mg2+ Furthermore, we find that final concentrations of the amino acids need not be high to cause these effects; membrane stabilization persists after dilution as would have occurred during the rehydration of dried or partially dried pools. In addition to providing a means to stabilize protocell membranes, our results address the challenge of explaining how proteins could have become colocalized with membranes. Amino acids are the building blocks of proteins, and our results are consistent with a positive feedback loop in which amino acids bound to self-assembled fatty acid membranes, resulting in membrane stabilization and leading to more binding in turn. High local concentrations of molecular building blocks at the surface of fatty acid membranes may have aided the eventual formation of proteins.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195;
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Helen E Litz
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Andrew Ramsay
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Moshe Gordon
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
- Biological Structure, Physics, and Design Graduate Program, University of Washington, Seattle, WA 98195
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| |
Collapse
|
11
|
English SL, Forsythe JG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of model prebiotic peptides: Optimization of sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1507-1513. [PMID: 29885215 DOI: 10.1002/rcm.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Depsipeptides, or peptides with a mixture of amide and ester linkages, may have evolved into peptides on primordial Earth. Previous studies on depsipeptides utilized electrospray ionization ion mobility quadrupole time-of-flight (ESI-IM-QTOF) tandem mass spectrometry; such analysis was thorough yet time-consuming. Here, a complementary matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approach was optimized for rapid characterization of depsipeptide length and monomer composition. METHODS Depsipeptide mixtures of varying hydrophobicity were formed by subjecting aqueous mixtures of α-hydroxy acids and α-amino acids to evaporative cycles. Ester and amide content of depsipeptides was orthogonally confirmed using infrared spectroscopy. MALDI-TOF MS analysis was performed on a Voyager DE-STR in reflection geometry and positive ion mode. Optimization parameters included choice of matrix, sample solvent, matrix-to-analyte ratio, and ionization additives. RESULTS It was determined that evaporated depsipeptide samples should be mixed with 2,5-dihydroxybenzoic acid (DHB) matrix in order to detect the highest number of unique signals. Low matrix-to-analyte ratios were found to generate higher quality spectra, likely due to a combination of matrix suppression and improved co-crystallization. Using this optimized protocol, a new depsipeptide mixture was characterized. CONCLUSIONS Understanding the diversity and chemical evolution of proto-peptides is of interest to origins-of-life research. Here, we have demonstrated MALDI-TOF MS can be used to rapidly screen the length and monomer composition of model prebiotic peptides containing a mixture of ester and amide backbone linkages.
Collapse
Affiliation(s)
- Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| |
Collapse
|
12
|
Raggi L, Bada JL, Lazcano A. On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Phys Chem Chem Phys 2018; 18:20028-32. [PMID: 27121024 DOI: 10.1039/c6cp00793g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The significance of experiments that claim to simulate the properties of prebiotic small peptides and polypeptides as models of the polymers that may have preceded proteins is critically addressed. As discussed here, most of these experiments are based only on a small number of a larger set of amino acids that may have been present in the prebiotic environment, supported by both experimental simulations and the repertoire of organic compounds reported in carbonaceous chondrites. Model experiments with small peptides may offer some insights into the processes that contributed to generate the chemical environment leading to the emergence of informational oligomers, but not to the origin of proteins. The large body of circumstantial evidence indicating that catalytic RNA played a key role in the origin of protein synthesis during the early stages of cellular evolution implies that the emergence of the genetic code and of protein biosynthesis are no longer synonymous with the origin of life. Hence, reports on the abiotic synthesis of small catalytic peptides under potential prebiotic conditions do not provide information on the origin of triplet encoded protein biosynthesis, but in some cases may serve as models to understand the properties of the earliest proteins.
Collapse
Affiliation(s)
- Luciana Raggi
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-407, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Jeffrey L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-407, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
13
|
Blanco C, Bayas M, Yan F, Chen IA. Analysis of Evolutionarily Independent Protein-RNA Complexes Yields a Criterion to Evaluate the Relevance of Prebiotic Scenarios. Curr Biol 2018; 28:526-537.e5. [PMID: 29398222 DOI: 10.1016/j.cub.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
A central difficulty facing study of the origin of life on Earth is evaluating the relevance of different proposed prebiotic scenarios. Perhaps the most established feature of the origin of life was the progression through an RNA World, a prebiotic stage dominated by functional RNA. We use the appearance of proteins in the RNA World to understand the prebiotic milieu and develop a criterion to evaluate proposed synthetic scenarios. Current consensus suggests that the earliest amino acids of the genetic code were anionic or small hydrophobic or polar amino acids. However, the ability to interact with the RNA World would have been a crucial feature of early proteins. To determine which amino acids would be important for the RNA World, we analyze non-biological protein-aptamer complexes in which the RNA or DNA is the result of in vitro evolution. This approach avoids confounding effects of biological context and evolutionary history. We use bioinformatic analysis and molecular dynamics simulations to characterize these complexes. We find that positively charged and aromatic amino acids are over-represented whereas small hydrophobic amino acids are under-represented. Binding enthalpy is found to be primarily electrostatic, with positively charged amino acids contributing cooperatively to binding enthalpy. Arginine dominates all modes of interaction at the interface. These results suggest that proposed prebiotic syntheses must be compatible with cationic amino acids, particularly arginine or a biophysically similar amino acid, in order to be relevant to the invention of protein by the RNA World.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Marco Bayas
- Departamento de Fisica, Escuela Politécnica Nacional, Quito, Ladron de Guevara E11-253, Ecuador
| | - Fu Yan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA; Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
14
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|
15
|
Doig AJ. Frozen, but no accident – why the 20 standard amino acids were selected. FEBS J 2017; 284:1296-1305. [DOI: 10.1111/febs.13982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew J. Doig
- Department of Chemistry Manchester Institute of Biotechnology University of Manchester UK
| |
Collapse
|
16
|
Carels N, Ponce de Leon M. An Interpretation of the Ancestral Codon from Miller's Amino Acids and Nucleotide Correlations in Modern Coding Sequences. Bioinform Biol Insights 2015; 9:37-47. [PMID: 25922573 PMCID: PMC4401237 DOI: 10.4137/bbi.s24021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Miguel Ponce de Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
17
|
From the RNA world to the RNA/protein world: contribution of some riboswitch-binding species? J Theor Biol 2015; 370:197-201. [PMID: 25571850 DOI: 10.1016/j.jtbi.2014.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022]
Abstract
Some amino acids and their formal derivatives, currently riboswitch-binding species, could have interacted with polyribonucletides in prebiotic environments, leading to the peptide formation. If the resulting compounds had led to a sustainable polymerization of amino acids and the new structures had catalytic activity, such would have been an important contribution to the transition from the RNA world to the RNA/Protein world.
Collapse
|
18
|
Longo LM, Tenorio CA, Kumru OS, Middaugh CR, Blaber M. A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding. Protein Sci 2014; 24:27-37. [PMID: 25297559 DOI: 10.1002/pro.2580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/06/2014] [Indexed: 11/06/2022]
Abstract
The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate "cradle" for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original "prebiotic" set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a "primitive" designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)-having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a "primitive" polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation-identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, 32306-4300
| | | | | | | | | |
Collapse
|
19
|
Are proposed early genetic codes capable of encoding viable proteins? J Mol Evol 2014; 78:263-74. [PMID: 24826911 DOI: 10.1007/s00239-014-9622-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/28/2014] [Indexed: 01/10/2023]
Abstract
Proteins are elaborate biopolymers balancing between contradicting intrinsic propensities to fold, aggregate, or remain disordered. Assessing their primary structural preferences observable without evolutionary optimization has been reinforced by the recent identification of de novo proteins that have emerged from previously non-coding sequences. In this paper we investigate structural preferences of hypothetical proteins translated from random DNA segments using the standard genetic code and three of its proposed evolutionarily predecessor models encoding 10, 6, and 4 amino acids, respectively. Our only main assumption is that the disorder, aggregation, and transmembrane helix predictions used are able to reflect the differences in the trends of the protein sets investigated. We found that the 10-residue code encodes proteins that resemble modern proteins in their predicted structural properties. All of the investigated early genetic codes give rise to proteins with enhanced disorder and diminished aggregation propensities. Our results suggest that an ancestral genetic code similar to the proposed 10-residue one is capable of encoding functionally diverse proteins but these might have existed under conditions different from today's common physiological ones. The existence of a protein functional repertoire for the investigated earlier stages which is quite distinct as it is today can be deduced from the presented results.
Collapse
|
20
|
Ilardo MA, Freeland SJ. Testing for adaptive signatures of amino acid alphabet evolution using chemistry space. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/1759-2208-5-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Longo LM, Blaber M. Prebiotic protein design supports a halophile origin of foldable proteins. Front Microbiol 2014; 4:418. [PMID: 24432016 PMCID: PMC3880840 DOI: 10.3389/fmicb.2013.00418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| | - Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
22
|
Alvarez-Carreño C, Becerra A, Lazcano A. Norvaline and norleucine may have been more abundant protein components during early stages of cell evolution. ORIGINS LIFE EVOL B 2013; 43:363-75. [PMID: 24013929 DOI: 10.1007/s11084-013-9344-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The absence of the hydrophobic norvaline and norleucine in the inventory of protein amino acids is readdressed. The well-documented intracellular accumulation of these two amino acids results from the low-substrate specificity of the branched-chain amino acid biosynthetic enzymes that act over a number of related α-ketoacids. The lack of absolute substrate specificity of leucyl-tRNA synthase leads to a mischarged norvalyl-tRNA(Leu) that evades the translational proofreading activities and produces norvaline-containing proteins, (cf. Apostol et al. J Biol Chem 272:28980-28988, 1997). A similar situation explains the presence of minute but detectable amounts of norleucine in place of methionine. Since with few exceptions both leucine and methionine are rarely found in the catalytic sites of most enzymes, their substitution by norvaline and norleucine, respectively, would have not been strongly hindered in small structurally simple catalytic polypeptides during the early stages of biological evolution. The report that down-shifts of free oxygen lead to high levels of intracellular accumulation of pyruvate and the subsequent biosynthesis of norvaline (Soini et al. Microb Cell Factories 7:30, 2008) demonstrates the biochemical and metabolic consequences of the development of a highly oxidizing environment. The results discussed here also suggest that a broader definition of biomarkers in the search for extraterrestrial life may be required.
Collapse
Affiliation(s)
- Claudia Alvarez-Carreño
- Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico D.F, Mexico
| | | | | |
Collapse
|
23
|
Longo LM, Lee J, Blaber M. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc Natl Acad Sci U S A 2013; 110:2135-9. [PMID: 23341608 PMCID: PMC3568330 DOI: 10.1073/pnas.1219530110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 "prebiotic" α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a "foldable set"--that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two "primitive" versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment.
Collapse
Affiliation(s)
- Liam M. Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300
| | | | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300
| |
Collapse
|
24
|
Diez-García F, Chakrabartty A, González C, Laurents DV. An Arg-rich putative prebiotic protein is as stable as its Lys-rich variant. Arch Biochem Biophys 2012; 528:118-26. [DOI: 10.1016/j.abb.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
25
|
Longo LM, Blaber M. Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 2012; 526:16-21. [DOI: 10.1016/j.abb.2012.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/23/2012] [Indexed: 12/01/2022]
|
26
|
Scorei R. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. ORIGINS LIFE EVOL B 2012; 42:3-17. [PMID: 22528885 DOI: 10.1007/s11084-012-9269-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/02/2011] [Indexed: 01/20/2023]
Abstract
Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".
Collapse
Affiliation(s)
- Romulus Scorei
- Department of Biochemistry, University of Craiova, 13 A.I. Cuza Street, 200585, Craiova, Dolj County, Romania.
| |
Collapse
|