1
|
Schierholz L, Brown CR, Helena-Bueno K, Uversky VN, Hirt RP, Barandun J, Melnikov SV. A Conserved Ribosomal Protein Has Entirely Dissimilar Structures in Different Organisms. Mol Biol Evol 2024; 41:msad254. [PMID: 37987564 PMCID: PMC10764239 DOI: 10.1093/molbev/msad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ribosomes from different species can markedly differ in their composition by including dozens of ribosomal proteins that are unique to specific lineages but absent in others. However, it remains unknown how ribosomes acquire new proteins throughout evolution. Here, to help answer this question, we describe the evolution of the ribosomal protein msL1/msL2 that was recently found in ribosomes from the parasitic microorganism clade, microsporidia. We show that this protein has a conserved location in the ribosome but entirely dissimilar structures in different organisms: in each of the analyzed species, msL1/msL2 exhibits an altered secondary structure, an inverted orientation of the N-termini and C-termini on the ribosomal binding surface, and a completely transformed 3D fold. We then show that this fold switching is likely caused by changes in the ribosomal msL1/msL2-binding site, specifically, by variations in rRNA. These observations allow us to infer an evolutionary scenario in which a small, positively charged, de novo-born unfolded protein was first captured by rRNA to become part of the ribosome and subsequently underwent complete fold switching to optimize its binding to its evolving ribosomal binding site. Overall, our work provides a striking example of how a protein can switch its fold in the context of a complex biological assembly, while retaining its specificity for its molecular partner. This finding will help us better understand the origin and evolution of new protein components of complex molecular assemblies-thereby enhancing our ability to engineer biological molecules, identify protein homologs, and peer into the history of life on Earth.
Collapse
Affiliation(s)
- Léon Schierholz
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Robert P Hirt
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Jonas Barandun
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
2
|
van den Elzen A, Helena-Bueno K, Brown CR, Chan LI, Melnikov S. Ribosomal proteins can hold a more accurate record of bacterial thermal adaptation compared to rRNA. Nucleic Acids Res 2023; 51:8048-8059. [PMID: 37395434 PMCID: PMC10450194 DOI: 10.1093/nar/gkad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Ribosomal genes are widely used as 'molecular clocks' to infer evolutionary relationships between species. However, their utility as 'molecular thermometers' for estimating optimal growth temperature of microorganisms remains uncertain. Previously, some estimations were made using the nucleotide composition of ribosomal RNA (rRNA), but the universal application of this approach was hindered by numerous outliers. In this study, we aimed to address this problem by identifying additional indicators of thermal adaptation within the sequences of ribosomal proteins. By comparing sequences from 2021 bacteria with known optimal growth temperature, we identified novel indicators among the metal-binding residues of ribosomal proteins. We found that these residues serve as conserved adaptive features for bacteria thriving above 40°C, but not at lower temperatures. Furthermore, the presence of these metal-binding residues exhibited a stronger correlation with the optimal growth temperature of bacteria compared to the commonly used correlation with the 16S rRNA GC content. And an even more accurate correlation was observed between the optimal growth temperature and the YVIWREL amino acid content within ribosomal proteins. Overall, our work suggests that ribosomal proteins contain a more accurate record of bacterial thermal adaptation compared to rRNA. This finding may simplify the analysis of unculturable and extinct species.
Collapse
Affiliation(s)
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Rivas M, Fox GE. How to build a protoribosome: structural insights from the first protoribosome constructs that have proven to be catalytically active. RNA (NEW YORK, N.Y.) 2023; 29:263-272. [PMID: 36604112 PMCID: PMC9945445 DOI: 10.1261/rna.079417.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/11/2022] [Indexed: 05/05/2023]
Abstract
The modern ribosome catalyzes all coded protein synthesis in extant organisms. It is likely that its core structure is a direct descendant from the ribosome present in the last common ancestor (LCA). Hence, its earliest origins likely predate the LCA and therefore date further back in time. Of special interest is the pseudosymmetrical region (SymR) that lies deep within the large subunit (LSU) where the peptidyl transfer reaction takes place. It was previously proposed that two RNA oligomers, representing the P- and A-regions of extant ribosomes dimerized to create a pore-like structure, which hosted the necessary properties that facilitate peptide bond formation. However, recent experimental studies show that this may not be the case. Instead, several RNA constructs derived exclusively from the P-region were shown to form a homodimer capable of peptide bond synthesis. Of special interest will be the origin issues because the homodimer would have allowed a pre-LCA ribosome that was significantly smaller than previously proposed. For the A-region, the immediate issue will likely be its origin and whether it enhances ribosome performance. Here, we reanalyze the RNA/RNA interaction regions that most likely lead to SymR formation in light of these recent findings. Further, it has been suggested that the ability of these RNA constructs to dimerize and enhance peptide bond formation is sequence-dependent. We have analyzed the implications of sequence variations as parts of functional and nonfunctional constructs.
Collapse
Affiliation(s)
- Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| |
Collapse
|
4
|
Bose T, Fridkin G, Davidovich C, Krupkin M, Dinger N, Falkovich A, Peleg Y, Agmon I, Bashan A, Yonath A. Origin of life: protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nucleic Acids Res 2022; 50:1815-1828. [PMID: 35137169 PMCID: PMC8886871 DOI: 10.1093/nar/gkac052] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Although the mode of action of the ribosomes, the multi-component universal effective protein-synthesis organelles, has been thoroughly explored, their mere appearance remained elusive. Our earlier comparative structural studies suggested that a universal internal small RNA pocket-like segment called by us the protoribosome, which is still embedded in the contemporary ribosome, is a vestige of the primordial ribosome. Herein, after constructing such pockets, we show using the "fragment reaction" and its analyses by MALDI-TOF and LC-MS mass spectrometry techniques, that several protoribosome constructs are indeed capable of mediating peptide-bond formation. These findings present strong evidence supporting our hypothesis on origin of life and on ribosome's construction, thus suggesting that the protoribosome may be the missing link between the RNA dominated world and the contemporary nucleic acids/proteins life.
Collapse
Affiliation(s)
- Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Gil Fridkin
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel
| | - Chen Davidovich
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Miri Krupkin
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Nikita Dinger
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Alla H Falkovich
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Yoav Peleg
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry-Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021; 89:427-447. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The coming of the Last Universal Cellular Ancestor (LUCA) was the singular watershed event in the making of the biotic world. If the coming of LUCA marked the crossing of the "Darwinian Threshold", then pre-LUCA evolution must have been Pre-Darwinian and at least partly non-Darwinian. But how did Pre-Darwinian evolution before LUCA actually operate? I broaden our understanding of the central mechanism of biological evolution (i.e., variation-selection-inheritance) and then extend this broadened understanding to its natural starting point: the origin(s) of the First Universal Cellular Ancestors (FUCAs) before LUCA. My hypothesis centers upon vesicles' making-and-remaking as variation and competition as selection. More specifically, I argue that vesicles' acquisition and merger, via breaking-and-repacking, proto-endocytosis, proto-endosymbiosis, and other similar processes had been a central force of both variation and selection in the pre-Darwinian epoch. These new perspectives shed important new light upon the origin of FUCAs and their subsequent evolution into LUCA.
Collapse
|
7
|
Abstract
Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA;
| | - Peter R Wills
- Department of Physics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Rivas M, Fox GE. Further Characterization of the Pseudo-Symmetrical Ribosomal Region. Life (Basel) 2020; 10:life10090201. [PMID: 32937913 PMCID: PMC7555685 DOI: 10.3390/life10090201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
The peptidyl transferase center of the modern ribosome has been found to encompass an area of twofold pseudosymmetry (SymR). This observation strongly suggests that the very core of the ribosome arose from a dimerization event between two modest-sized RNAs. It was previously shown that at least four non-standard interactions exist between the two halves of SymR. Herein, we verify that the structure of the SymR is highly conserved with respect to both ribosome transition state and phylogenetic diversity. These comparisons also reveal two additional sites of interaction between the two halves of SymR and refine our understanding of the previously known interactions. In addition, the possible role that magnesium may have in the coordination, stabilization, association, and evolutionary history of the two halves (A-region and P-region) was examined. Together, the results identify a likely site where structural elements and Mg2+ ions may have facilitated the ligation of two aboriginal RNAs into a single unit.
Collapse
|
9
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Carter CW, Wills PR. Experimental solutions to problems defining the origin of codon-directed protein synthesis. Biosystems 2019; 183:103979. [PMID: 31176803 PMCID: PMC6693952 DOI: 10.1016/j.biosystems.2019.103979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
How genetic coding differentiated biology from chemistry is a long-standing challenge in Biology, for which there have been few experimental approaches, despite a wide-ranging speculative literature. We summarize five coordinated areas-experimental characterization of functional approximations to the minimal peptides (protozymes and urzymes) necessary to activate amino acids and acylate tRNA; showing that specificities of these experimental models match those expected from the synthetase Class division; population of disjoint regions of amino acid sequence space via bidirectional coding ancestry of the two synthetase Classes; showing that the phase transfer equilibria of amino acid side chains that form a two-dimensional basis set for protein folding are embedded in patterns of bases in the tRNA acceptor stem and anticodon; and identification of molecular signatures of ancestral synthetases and tRNAs necessary to define the earliest cognate synthetase:tRNA pairs-that now compose an extensive experimentally testable paradigm for progress toward understanding the coordinated emergence of the codon table and viable mRNA coding sequences. We briefly discuss recent progress toward identifying the remaining outstanding questions-the nature of the earliest amino acid alphabets and the origin of binding discrimination via distinct amino acid sequence-independent protein secondary structures-and how these, too, might be addressed experimentally.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, United States
| | - Peter R Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
12
|
Abstract
The ribosome is imprinted with a detailed molecular chronology of the origins and early evolution of proteins. Here we show that when arranged by evolutionary phase of ribosomal evolution, ribosomal protein (rProtein) segments reveal an atomic level history of protein folding. The data support a model in which aboriginal oligomers evolved into globular proteins in a hierarchical step-wise process. Complexity of assembly and folding of polypeptide increased incrementally in concert with expansion of rRNA. (i) Short random coil proto-peptides bound to rRNA, and (ii) lengthened over time and coalesced into β–β secondary elements. These secondary elements (iii) accreted and collapsed, primarily into β-domains. Domains (iv) accumulated and gained complex super-secondary structures composed of mixtures of α-helices and β-strands. Early protein evolution was guided and accelerated by interactions with rRNA. rRNA and proto-peptide provided mutual protection from chemical degradation and disassembly. rRNA stabilized polypeptide assemblies, which evolved in a stepwise process into globular domains, bypassing the immense space of random unproductive sequences. Coded proteins originated as oligomers and polymers created by the ribosome, on the ribosome and for the ribosome. Synthesis of increasingly longer products was iteratively coupled with lengthening and maturation of the ribosomal exit tunnel. Protein catalysis appears to be a late byproduct of selection for sophisticated and finely controlled assembly.
Collapse
Affiliation(s)
- Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Kathryn A Lanier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
13
|
Lanier KA, Petrov AS, Williams LD. The Central Symbiosis of Molecular Biology: Molecules in Mutualism. J Mol Evol 2017; 85:8-13. [PMID: 28785970 PMCID: PMC5579163 DOI: 10.1007/s00239-017-9804-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022]
Abstract
As illustrated by the mitochondrion and the eukaryotic cell, little in biology makes sense except in light of mutualism. Mutualisms are persistent, intimate, and reciprocal exchanges; an organism proficient in obtaining certain benefits confers those on a partner, which reciprocates by conferring different benefits. Mutualisms (i) increase fitness, (ii) inspire robustness, (iii) are resilient and resistant to change, (iv) sponsor co-evolution, (v) foster innovation, and (vi) involve partners that are distantly related with contrasting yet complementary proficiencies. Previous to this work, mutualisms were understood to operate on levels of cells, organisms, ecosystems, and even societies and economies. Here, the concepts of mutualism are extended to molecules and are seen to apply to the relationship between RNA and protein. Polynucleotide and polypeptide are Molecules in Mutualism. RNA synthesizes protein in the ribosome and protein synthesizes RNA in polymerases. RNA and protein are codependent, and trade proficiencies. Protein has proficiency in folding into complex three-dimensional states, contributing enzymes, fibers, adhesives, pumps, pores, switches, and receptors. RNA has proficiency in direct molecular recognition, achieved by complementary base pairing interactions, which allow it to maintain, record, and transduce information. The large phylogenetic distance that characterizes partnerships in organismal mutualism has close analogy with large distance in chemical space between RNA and protein. The RNA backbone is anionic and self-repulsive and cannot form hydrophobic structural cores. The protein backbone is neutral and cohesive and commonly forms hydrophobic cores. Molecules in Mutualism extends beyond RNA and protein. A cell is a consortium of molecules in which nucleic acids, proteins, polysaccharides, phospholipids, and other molecules form a mutualism consortium that drives metabolism and replication. Analogies are found in systems such as stromatolites, which are large consortia of symbiotic organisms. It seems reasonable to suggest that 'polymers in mutualism relationships' is a useful and predictive definition of life.
Collapse
Affiliation(s)
- Kathryn A. Lanier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| | - Anton S. Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| |
Collapse
|
14
|
Yonath A. Quantum mechanic glimpse into peptide bond formation within the ribosome shed light on origin of life. Struct Chem 2017. [DOI: 10.1007/s11224-017-0980-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Das D, Samanta D, Bhattacharya A, Basu A, Das A, Ghosh J, Chakrabarti A, Das Gupta C. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling. PLoS One 2017; 12:e0170333. [PMID: 28099529 PMCID: PMC5242463 DOI: 10.1371/journal.pone.0170333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022] Open
Abstract
Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Dibyendu Samanta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arpita Bhattacharya
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arunima Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Microbiology, Raidighi College, Raidighi, 24 Parganas (S), West Bengal, India
| | - Anindita Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Jaydip Ghosh
- Department of Microbiology, St. Xavier’s College, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Chanchal Das Gupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, India
- * E-mail:
| |
Collapse
|
16
|
Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. BIOCHEMISTRY (MOSCOW) 2016; 80:495-516. [PMID: 26071768 DOI: 10.1134/s0006297915050016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.
Collapse
Affiliation(s)
- D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
17
|
Abstract
We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA.
Collapse
|
18
|
Abstract
An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.
Collapse
|
19
|
How amino acids and peptides shaped the RNA world. Life (Basel) 2015; 5:230-46. [PMID: 25607813 PMCID: PMC4390850 DOI: 10.3390/life5010230] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022] Open
Abstract
The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.
Collapse
|
20
|
Abstract
The origins and evolution of the ribosome, 3-4 billion years ago, remain imprinted in the biochemistry of extant life and in the structure of the ribosome. Processes of ribosomal RNA (rRNA) expansion can be "observed" by comparing 3D rRNA structures of bacteria (small), yeast (medium), and metazoans (large). rRNA size correlates well with species complexity. Differences in ribosomes across species reveal that rRNA expansion segments have been added to rRNAs without perturbing the preexisting core. Here we show that rRNA growth occurs by a limited number of processes that include inserting a branch helix onto a preexisting trunk helix and elongation of a helix. rRNA expansions can leave distinctive atomic resolution fingerprints, which we call "insertion fingerprints." Observation of insertion fingerprints in the ribosomal common core allows identification of probable ancestral expansion segments. Conceptually reversing these expansions allows extrapolation backward in time to generate models of primordial ribosomes. The approach presented here provides insight to the structure of pre-last universal common ancestor rRNAs and the subsequent expansions that shaped the peptidyl transferase center and the conserved core. We infer distinct phases of ribosomal evolution through which ribosomal particles evolve, acquiring coding and translocation, and extending and elaborating the exit tunnel.
Collapse
|
21
|
|
22
|
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. The drive to life on wet and icy worlds. ASTROBIOLOGY 2014; 14:308-43. [PMID: 24697642 PMCID: PMC3995032 DOI: 10.1089/ast.2013.1110] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).
Collapse
|
23
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
24
|
Rivas M, Tran Q, Fox GE. Nanometer scale pores similar in size to the entrance of the ribosomal exit cavity are a common feature of large RNAs. RNA (NEW YORK, N.Y.) 2013; 19:1349-1354. [PMID: 23940386 PMCID: PMC3854525 DOI: 10.1261/rna.038828.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
The highly conserved peptidyl transferase center (PTC) of the ribosome contains an RNA pore that serves as the entrance to the exit tunnel. Analysis of available ribosome crystal structures has revealed the presence of multiple additional well-defined pores of comparable size in the ribosomal (rRNA) RNAs. These typically have dimensions of 1-2 nm, with a total area of ∼100 Å(2) or more, and most are associated with one or more ribosomal proteins. The PTC example and the other rRNA pores result from the packing of helices. However, in the non-PTC cases the nitrogenous bases do not protrude into the pore, thereby limiting the potential for hydrogen bonding within the pore. Instead, it is the RNA backbone that largely defines the pore likely resulting in a negatively charged environment. In many but not all cases, ribosomal proteins are associated with the pores to a greater or lesser extent. With the exception of the PTC case, the large subunit pores are not found in what are thought to be the evolutionarily oldest regions of the 23S rRNA. The unusual nature of the PTC pore may reflect a history of being created by hybridization between two or more RNAs early in evolution rather than simple folding of a single RNA. An initial survey of nonribosomal RNA crystal structures revealed additional pores, thereby showing that they are likely a general feature of RNA tertiary structure.
Collapse
Affiliation(s)
- Mario Rivas
- Laboratorio de Origen de la Vida, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, C.P. 0451, Mexico
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| |
Collapse
|
25
|
Neveu M, Kim HJ, Benner SA. The "strong" RNA world hypothesis: fifty years old. ASTROBIOLOGY 2013; 13:391-403. [PMID: 23551238 DOI: 10.1089/ast.2012.0868] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This year marks the 50(th) anniversary of a proposal by Alex Rich that RNA, as a single biopolymer acting in two capacities, might have supported both genetics and catalysis at the origin of life. We review here both published and previously unreported experimental data that provide new perspectives on this old proposal. The new data include evidence that, in the presence of borate, small amounts of carbohydrates can fix large amounts of formaldehyde that are expected in an environment rich in carbon dioxide. Further, we consider other species, including arsenate, arsenite, phosphite, and germanate, that might replace phosphate as linkers in genetic biopolymers. While linkages involving these oxyanions are judged to be too unstable to support genetics on Earth, we consider the possibility that they might do so in colder semi-aqueous environments more exotic than those found on Earth, where cosolvents such as ammonia might prevent freezing at temperatures well below 273 K. These include the ammonia-water environments that are possibly present at low temperatures beneath the surface of Titan, Saturn's largest moon.
Collapse
Affiliation(s)
- Marc Neveu
- Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, USA
| | | | | |
Collapse
|
26
|
Paz-Y-Miño-C G, Espinosa A. Galapagos III World Evolution Summit: why evolution matters. Evolution 2013; 6. [PMID: 26925190 PMCID: PMC4767162 DOI: 10.1186/1936-6434-6-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ‘Why Does Evolution Matter’, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin’s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage.
Collapse
Affiliation(s)
- Guillermo Paz-Y-Miño-C
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts 02747-2300, USA
| | - Avelina Espinosa
- Department of Biology, Roger Williams University, One Old Ferry Road, Bristol, Rhode Island 02809, USA
| |
Collapse
|
27
|
Fox GE, Tran Q, Rivas M, Stepanov V. 3 Origins and evolution of the translation machinery. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|