1
|
Arango-Restrepo A, Barragán D, Rubi JM. Variations in activation energy and nuclei size during nucleation explain chiral symmetry breaking. Phys Chem Chem Phys 2023; 25:29032-29041. [PMID: 37860883 DOI: 10.1039/d3cp03220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
We show that variations in enantiomer nuclei size and activation energy during the nucleation stage of crystallization are responsible for the chiral symmetry breaking resulting in excess of one of the possible enantiomers with respect to the other. By understanding the crystallisation process as a non-equilibrium self-assembly process, we quantify the enantiomeric excess through the probability distribution of the nuclei size and activation energy variations which are obtained from the free energy involved in the nucleation stage of crystallisation. We validate our theory by comparing it to Kondepudi et al. previous experimental work on sodium chlorate crystallisation. The results demonstrate that the self-assembly of enantiomeric crystals provides an explanation for chiral symmetry breaking. These findings could have practical applications for improving the production of enantiopure drugs in the pharmaceutical industry, as well as for enhancing our understanding of the origins of life since enantiomeric amino acids and monosaccharides are the building blocks of life.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain.
| | - D Barragán
- Escuela de Química, Universidad Nacional de Colombia, Carrera 65 No 59A-110, Bloque 16, Núcleo El Volador, 050034 Medellín, Colombia
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Arango-Restrepo A, Arteaga O, Barragán D, Rubi JM. Chiral symmetry breaking induced by energy dissipation. Phys Chem Chem Phys 2023; 25:9238-9248. [PMID: 36919512 DOI: 10.1039/d2cp05939h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Spontaneous chiral symmetry breaking is observed in a wide variety of systems on very different scales, from the subatomic to the cosmological. Despite its generality and importance for a large number of applications, its origin is still a matter of debate. It has been shown that the existence of a difference between the energies of the intermediate states of optical enantiomers leads to disparate production rates and thus to symmetry breaking. However, it is still unclear why this occurs. We measured for the first time the optical rotation angle of NaClO3 enantiomeric crystals in solution during their formation and found that the amount of energy needed to induce the enantiomeric excess is exactly the same as the energy dissipated per mole of solid salt calculated from the entropy production obtained from the proposed model. The irreversible nature of the process leading to entropy production thus explains the chiral symmetry breaking in the salt crystals studied. The proposed method could be used to explain the formation of self-organised structures generated by self-assembly of enantiomers arising from chiral symmetry breaking, such as those emerging in the production of advanced materials and synthetic biological tissues.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain.
| | - O Arteaga
- Departament de Física Aplicada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | - D Barragán
- Escuela de Química, Universidad Nacional de Colombia, Carrera 65 No 59A-110, Bloque 16, Núcleo El Volador, 050034 Medellín, Colombia
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Konstantinov KK, Konstantinova AF. Evolutionary Approach to Biological Homochirality. ORIGINS LIFE EVOL B 2022; 52:205-232. [DOI: 10.1007/s11084-022-09632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
AbstractWe study a very simple linear evolutionary model based on distribution of protocells by total enantiomeric excess and without any mutual inhibition and show that such model can produce two species with values of total enantiomeric excess in each of the species approaching $$\pm 1$$
±
1
when there is a global $$L\leftrightarrow D$$
L
↔
D
symmetry. We then consider a scenario when there is a small external global asymmetry factor, like weak interaction, and show that only one of the species remains in such a case, and that is the one, which is more efficient in replication. We perform an estimate of the time necessary to reach homochirality in such a model and show that reasonable assumptions lead to an estimate of around 300 thousand years plus or minus a couple of orders of magnitude. Despite this seemingly large time to reach homochirality, the model is immune to racemization because amino acids in the model follow the lifespan of the protocells rather than the time needed to reach homochirality. We show that not needing mutual inhibition in such evolutionary model is due to the difference in the topology of the spaces in which considered model and many known models of biological homochirality operate. Bifurcation-based models operate in disconnected zero-dimensional space (the space is just two points with enantiomeric excess equal $$-1$$
-
1
and $$1$$
1
), whereas considered evolutionary model (in its continuous representation) operates in one-dimensional connected space, that is the whole interval between $$-1$$
-
1
and $$1$$
1
of total enantiomeric excess. We then proceed with the analysis of the replication process in non-homochiral environment and show that replication errors (the probability to attach an amino acid of wrong chirality) result in a smooth decrease of replication time when total enantiomeric excess of the replicated structure moves away from zero. We show that this decrease in replication time is sufficient for considered model to work.
Collapse
|
4
|
Bourdon-García RD, Ágreda J, Burgos-Salcedo J, Hochberg D, Ribó JM, Bargueño P, Estupiñan Salamanca A. Stoichiometric network analysis in reaction networks yielding spontaneous mirror symmetry breaking in a prebiotic atmosphere. Phys Chem Chem Phys 2022; 24:20788-20802. [PMID: 35667251 DOI: 10.1039/d2cp00538g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of amino acid homochirality under prebiotic atmosphere conditions is a relevant issue in the study of the origin of life. This research is based on the production of amino acids via Strecker synthesis and how it is adjusted to the Kondepudi-Nelson autocatalytic model. The spontaneous mirror symmetry breaking (SMSB) of the new Kondepudi-Nelson-Strecker model, subject to two modifications (with Limited Enantioselective and Cross Inhibition), and also their combination were studied using the stoichiometric network analysis (SNA). In the calculations, the values obtained from the literature for alanine were considered. A total production of alanine of 7.56 × 109 mol year-1 was determined under prebiotic atmosphere conditions and starting from that value, the reaction rates for the models studied were estimated. Only the model with cross inhibition or achiral dimer formation is driven by stochastic fluctuations during SMSB. The stochastic fluctuation was estimated for a value of 2.619 × 10-15 mol L-1. This perturbation was sufficient to trigger SMSB. Finally, the results of SMSB were used to calculate the entropy production for the cross inhibition model.
Collapse
Affiliation(s)
- Rubén Danilo Bourdon-García
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia. .,Facultad de Ingeniería Civil, Fundación Universitaria Agraria de Colombia, Av. 170 54A - 10, 111166 Bogotá, DC, Colombia
| | - Jesús Ágreda
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia.
| | - Javier Burgos-Salcedo
- Dirección de Investigación, Fundación Universitaria San Mateo, Transv. 17 25 - 25, 111411 Bogotá, DC, Colombia
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilometro 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | - Josep M Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Bargueño
- Departamento de Física Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03690 Alicante, Spain.
| | | |
Collapse
|
5
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
6
|
López-Castillo A. Chiral symmetry conservation principle. Chirality 2021; 34:104-113. [PMID: 34725859 DOI: 10.1002/chir.23371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
We show a chiral symmetry conservation principle based on chemical kinetics using stochastic results. Suppose the chiral symmetry conservation is evoked, and our universe can be considered globally asymmetric. In that case, there are at least two mirrored asymmetric universes if all the chiral properties are strongly correlated. However, if the chiral correlations are weak or nonexistent, there are possibly Many-(Chiral-Symmetry)-Worlds. Alternatively, if our universe is only locally asymmetric, there could be a single universe with segregated chiral regions. The possible mechanisms of the primordial chiral symmetry breaking can only be found if the chiral symmetry is not truly conserved by assuming the initial racemic conditions. In that case, our universe is asymmetric and could be alone. On the other hand, if the chiral symmetry is conserved, there is no chance of finding the primordial chiral symmetry breaking. Based on this conservation (or not), it is possible to infer two opposite hypotheses, where two general scenarios about the chiral universes are possible.
Collapse
|
7
|
Konstantinov KK, Konstantinova AF. Chiral Symmetry Breaking in Large Peptide Systems. ORIGINS LIFE EVOL B 2020; 50:99-120. [PMID: 32945989 DOI: 10.1007/s11084-020-09600-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
Chiral symmetry breaking in far from equilibrium systems with large number of amino acids and peptides, like a prebiotic Earth, was considered. It was shown that if organic catalysts were abundant, then effective averaging of enantioselectivity would prohibit any symmetry breaking in such systems. It was further argued that non-linear (catalytic) reactions must be very scarce (called the abundance parameter) and catalysts should work on small groups of similar reactions (called the similarity parameter) in order to chiral symmetry breaking have a chance to occur. Models with 20 amino acids and peptide lengths up to three were considered. It was shown that there are preferred ranges of abundance and similarity parameters where the symmetry breaking can occur in the models with catalytic synthesis / catalytic destruction / both catalytic synthesis and catalytic destruction. It was further shown that models with catalytic synthesis and catalytic destruction statistically result in a substantially higher percentage of the models where the symmetry breaking can occur in comparison to the models with just catalytic synthesis or catalytic destruction. It was also shown that when chiral symmetry breaking occurs, then concentrations of some amino acids, which collectively have some mutually beneficial properties, go up, whereas the concentrations of the ones, which don't have such properties, go down. An open source code of the whole system was provided to ensure that the results can be checked, repeated, and extended further if needed.
Collapse
Affiliation(s)
- Konstantin K Konstantinov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333, Russia. .,Softellect Systems, Inc., 414-300 Ave des Sommets, Verdun, QC, H3E 2B7, Canada.
| | - Alisa F Konstantinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333, Russia
| |
Collapse
|
8
|
Ribó JM, Hochberg D. Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states. Phys Chem Chem Phys 2020; 22:14013-14025. [DOI: 10.1039/d0cp02280b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stability of non-equilibrium stationary states and spontaneous mirror symmetry breaking, provoked by the destabilization of the racemic thermodynamic branch, is studied for enantioselective autocatalysis in an open flow system, and for a continuous range n of autocatalytic orders.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department of Organic Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
- Institute of Cosmos Science (IEEC-UB)
| | - David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiology (CSIC-INTA)
- E-28850 Torrejón de Ardoz
- Spain
| |
Collapse
|
9
|
Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.
Collapse
|
10
|
Romero-Fernández MP, Babiano R, Cintas P. On the asymmetric autocatalysis of aldol reactions: The case of 4-nitrobenzaldehyde and acetone. A critical appraisal with a focus on theory. Chirality 2018; 30:445-456. [PMID: 29319198 DOI: 10.1002/chir.22805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/08/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Under neutral conditions, spontaneous mirror symmetry breaking has been occasionally reported for aldol reactions starting from achiral reagents and conditions. Chiral induction might be interpreted in terms of autocatalysis exerted by chiral mono-aldol or bis-aldol products as source of initial enantiomeric excesses, which may account for such experimental observations. We describe here a thorough Density Functional Theory (DFT) study on this complex and otherwise difficult problem, which provides some insights into this phenomenon. The picture adds further rationale to an in-depth analysis by Moyano et al, who showed the isolation and characterization of bis-aldol adducts and their participation in a complex network of reversible steps. However, the lack of enantiodiscrimination (ees vanish rapidly in solution) suggests, according to the present results, a weak association in complexes formed by the catalysts and substrates. The latter would also be consistent with almost flat transition states having similar heights for competitive catalyst-bound transition structures (actually, we were unable to locate them at the level explored). Overall, neither autocatalysis as once conjectured nor mutual inhibition of enantiomers appears to be operating mechanisms. Asymmetric amplification in early stages harnessing unavoidable enantiomeric imbalances in reaction mixtures of chiral products represents a plausible interpretation.
Collapse
Affiliation(s)
- M Pilar Romero-Fernández
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
11
|
Ribó JM, Hochberg D, Crusats J, El-Hachemi Z, Moyano A. Spontaneous mirror symmetry breaking and origin of biological homochirality. J R Soc Interface 2017; 14:20170699. [PMID: 29237824 PMCID: PMC5746574 DOI: 10.1098/rsif.2017.0699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Recent reports on both theoretical simulations and on the physical chemistry basis of spontaneous mirror symmetry breaking (SMSB), that is, asymmetric synthesis in the absence of any chiral polarizations other than those arising from the chiral recognition between enantiomers, strongly suggest that the same nonlinear dynamics acting during the crucial stages of abiotic chemical evolution leading to the formation and selection of instructed polymers and replicators, would have led to the homochirality of instructed polymers. We review, in the first instance, which reaction networks lead to the nonlinear kinetics necessary for SMSB, and the thermodynamic features of the systems where this potentiality may be realized. This could aid not only in the understanding of SMSB, but also the design of reliable scenarios in abiotic evolution where biological homochirality could have taken place. Furthermore, when the emergence of biological chirality is assumed to occur during the stages of chemical evolution leading to the selection of polymeric species, one may hypothesize on a tandem track of the decrease of symmetry order towards biological homochirality, and the transition from the simple chemistry of astrophysical scenarios to the complexity of systems chemistry yielding Darwinian evolution.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Joaquim Crusats
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Zoubir El-Hachemi
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Albert Moyano
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Konstantinov KK, Konstantinova AF. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth. ORIGINS LIFE EVOL B 2017; 48:93-122. [PMID: 29119380 DOI: 10.1007/s11084-017-9551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.
Collapse
|
13
|
Hochberg D, Bourdon García RD, Ágreda Bastidas JA, Ribó JM. Stoichiometric network analysis of spontaneous mirror symmetry breaking in chemical reactions. Phys Chem Chem Phys 2017; 19:17618-17636. [DOI: 10.1039/c7cp02159c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stoichiometric network analysis (SNA) is used to study spontaneous mirror symmetry breaking in chemical reaction schemes.
Collapse
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiología (CSIC-INTA)
- 28850 Torrejón de Ardoz
- Spain
| | | | | | - Josep M. Ribó
- Department of Organic Chemistry
- Institute of Cosmos Science (IEEC-UB)
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
14
|
Ball R, Brindley J. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life. ORIGINS LIFE EVOL B 2016; 46:81-93. [PMID: 26399407 DOI: 10.1007/s11084-015-9465-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022]
Abstract
It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra, 2602, Australia.
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
Konstantinova AF, Konstantinov KK. Chiral symmetry breaking in complex chemical systems during formation of life on earth. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s1063774515050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ribó JM, Blanco C, Crusats J, El-Hachemi Z, Hochberg D, Moyano A. Absolute Asymmetric Synthesis in Enantioselective Autocatalytic Reaction Networks: Theoretical Games, Speculations on Chemical Evolution and Perhaps a Synthetic Option. Chemistry 2014; 20:17250-71. [DOI: 10.1002/chem.201404534] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 11/07/2022]
|
17
|
Valero G, Ribó JM, Moyano A. A Closer Look at Spontaneous Mirror Symmetry Breaking in Aldol Reactions. Chemistry 2014; 20:17395-408. [DOI: 10.1002/chem.201404497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/09/2022]
|
18
|
Blanco C, Crusats J, El-Hachemi Z, Moyano A, Veintemillas-Verdaguer S, Hochberg D, Ribó JM. The Viedma Deracemization of Racemic Conglomerate Mixtures as a Paradigm of Spontaneous Mirror Symmetry Breaking in Aggregation and Polymerization. Chemphyschem 2013; 14:3982-93. [DOI: 10.1002/cphc.201300699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/17/2013] [Indexed: 11/06/2022]
|
19
|
Blanco C, Crusats J, El-Hachemi Z, Moyano A, Hochberg D, Ribó JM. Spontaneous Emergence of Chirality in the Limited Enantioselectivity Model: Autocatalytic Cycle Driven by an External Reagent. Chemphyschem 2013; 14:2432-40. [DOI: 10.1002/cphc.201300350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/09/2022]
|
20
|
Ribó JM, El-Hachemi Z, Crusats J. Effects of flows in auto-organization, self-assembly, and emergence of chirality. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2013. [DOI: 10.1007/s12210-013-0233-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|