1
|
Ekosso C, Liu H, Glagovich A, Nguyen D, Maurer S, Schrier J. Accelerating the Discovery of Abiotic Vesicles with AI-Guided Automated Experimentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:858-867. [PMID: 39810357 DOI: 10.1021/acs.langmuir.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The first protocells are speculated to have arisen from the self-assembly of simple abiotic carboxylic acids, alcohols, and other amphiphiles into vesicles. To study the complex process of vesicle formation, we combined laboratory automation with AI-guided experimentation to accelerate the discovery of specific compositions and underlying principles governing vesicle formation. Using a low-cost commercial liquid handling robot, we automated experimental procedures, enabling high-throughput testing of various reaction conditions for mixtures of seven (7) amphiphiles. Multitemplate multiscale template matching (MMTM) was used to automate confocal microscopy image analysis, enabling us to quantify vesicle formation without tedious manual counting. The results were used to create a Gaussian process surrogate model, and then active learning was used to iteratively direct the laboratory experiments to reduce model uncertainty. Mixtures containing primarily trimethyl decylammonium and decylsulfate in equal amounts formed vesicles at submillimolar critical vesicle concentrations, and more than 20% glycerol monodecanoate prevented vesicles from forming even at high total amphiphile concentrations.
Collapse
Affiliation(s)
- Christelle Ekosso
- Department of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, Connecticut 06050, United States
| | - Hao Liu
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States
| | - Avery Glagovich
- Department of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, Connecticut 06050, United States
| | - Dustin Nguyen
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States
| | - Sarah Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, Connecticut 06050, United States
| | - Joshua Schrier
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States
| |
Collapse
|
2
|
Hazra B, Prasad M, Das S, Mandal R, Sardar A, Dewangan N, Tarafdar PK. Phosphate-Based Amphiphile and Lipidated Lysine Assemble into Superior Protocellular Membranes over Carboxylate and Sulfate-Based Systems: A Potential Missing Link between Prebiotic and the Modern Era? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17031-17042. [PMID: 37984966 DOI: 10.1021/acs.langmuir.3c01617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Amphiphiles are among the most extensively studied building blocks that self-assemble into cell-like compartments. Most literature suggested that the building blocks/amphiphiles of early Earth (fatty acid-based membrane) were much simpler than today's phospholipids. To establish the bridge between the prebiotic fatty acid era and the modern phospholipid era, the investigation and characterization of alternate building blocks that form protocellular membranes are necessary. Herein, we report the potential prebiotic synthesis of alkyl phosphate, alkyl carboxylate, and alkyl sulfate amphiphiles (anionic) using dry-down reactions and demonstrate a more general role of cationic amino acid-based amphiphiles to recruit the anionic amphiphiles via ion-pair, hydrogen bonding, and hydrophobic interactions. The formation and self-assembly of the catanionic (mixed) amphiphilic system to vesicular morphology were characterized by turbidimetric, dynamic light scattering, transmission electron microscopy, fluorescence lifetime imaging microscopy, and glucose encapsulation experiments. Further experiments suggest that the phosphate-based vesicles were more stable than the alkyl sulfate and alkyl carboxylate-based systems. Moreover, the alkyl phosphate system can form vesicles at prebiotically relevant acidic pH (5.0), while alkyl carboxylate mainly forms cluster-type aggregates. An extended supramolecular polymer-type network formation via H-bonding and ion-pair interactions might order the membrane interface and stabilize the phosphate-based vesicles. The results suggest that phosphate-based amphiphiles might be a superior successor to fatty acids as early compartment building blocks. The work highlights the importance of previously unexplored building blocks that participate in protocellular membrane formation to encapsulate important precursors required for the functions of early life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Avijit Sardar
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Nikesh Dewangan
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Holler S, Bartlett S, Löffler RJG, Casiraghi F, Diaz CIS, Cartwright JHE, Hanczyc MM. Hybrid organic-inorganic structures trigger the formation of primitive cell-like compartments. Proc Natl Acad Sci U S A 2023; 120:e2300491120. [PMID: 37561785 PMCID: PMC10438843 DOI: 10.1073/pnas.2300491120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Richard J. G. Löffler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Federica Casiraghi
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Claro Ignacio Sainz Diaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada18071, Spain
| | - Martin M. Hanczyc
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM87106
| |
Collapse
|
4
|
Sarkar S, Dagar S, Lahiri K, Rajamani S. pH-Responsive Self-Assembled Compartments as Tuneable Model Protocellular Membrane Systems. Chembiochem 2022; 23:e202200371. [PMID: 35968882 DOI: 10.1002/cbic.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Prebiotically plausible single-chain amphiphiles are enticing as model protocellular compartments to study the emergence of cellular life, owing to their self-assembling properties. Here, we investigated the self-assembly behaviour of mono-N-dodecyl phosphate (DDP) and mixed systems of DDP with 1-dodecanol (DDOH) at varying pH conditions. Membranes composed of DDP showed pH-responsive vesicle formation in a wide range of pH with a low critical bilayer concentration (CBC). Further, the addition of DDOH to DDP membrane system enhanced vesicle formation and stability in alkaline pH regimes. We also compared the high-temperature behaviour of DDP and DDP:DDOH membranes with conventional fatty acid membranes. Both, DDP and DDP:DDOH mixed membranes possess packing that is similar to decanoic acid membrane. However, the micropolarity of these systems is similar to phospholipid membranes. Finally, the pH-dependent modulation of different phospholipid membranes doped with DDP was also demonstrated to engineer tuneable membranes with potential translational implications.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Kushan Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
5
|
Lago I, Black L, Wilfinger M, Maurer SE. Synthesis and Characterization of Amino Acid Decyl Esters as Early Membranes for the Origins of Life. MEMBRANES 2022; 12:858. [PMID: 36135876 PMCID: PMC9502762 DOI: 10.3390/membranes12090858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Understanding how membrane forming amphiphiles are synthesized and aggregate in prebiotic settings is required for understanding the origins of life on Earth 4 billion years ago. Amino acids decyl esters were prepared by dehydration of decanol and amino acid as a model for a plausible prebiotic reaction at two temperatures. Fifteen amino acids were tested with a range of side chain chemistries to understand the role of amino acid identity on synthesis and membrane formation. Products were analyzed using LC-MS as well as microscopy. All amino acids tested produced decyl esters, and some of the products formed membranes when rehydrated in ultrapure water. One of the most abundant prebiotic amino acids, alanine, was remarkably easy to get to generate abundant, uniform membranes, indicating that this could be a selection mechanism for both amino acids and their amphiphilic derivatives.
Collapse
|
6
|
Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. ASTROBIOLOGY 2022; 22:598-627. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.
Collapse
Affiliation(s)
- Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Johal Ruiz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Philippe Oger
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Université de Lyon, Claude Bernard Lyon 1, Villeurbanne, France
| | - Emiliano Altamura
- Chemistry Department, Università degli studi di Bari "Aldo Moro," Bari, Italy
| | - Florence Popowycz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - René Buchet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| |
Collapse
|
7
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Spontaneous vesicle formation and vesicle-to-α-gel transition in aqueous mixtures of sodium monododecylphosphate and guanidinium salts. SOFT MATTER 2021; 17:4604-4614. [PMID: 33949616 DOI: 10.1039/d1sm00303h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoalkyl phosphates (MAPs) are one kind of important single-chain weak acid/salt type surfactants, but the understanding of their aggregation behavior in water is very limited due to their insolubility at room temperature. In the current work, the effect of guanidinium salts (GuSalts) on the solubility of sodium monododecylphosphate (SDP), a typical MAP, in water was determined at 25.0 °C, and the aggregation behavior of SDP in the GuSalt/water mixtures was investigated. The solubility of SDP is significantly improved by GuSalts including GuCl, GuSO4, GuSO3, GuPO4, and GuCO3 at 25.0 °C, resulting in an isotropic phase. SDP vesicles are spontaneously formed in the isotropic phase, with a critical vesicle concentration of ∼1.0 mM independent of the type of GuSalts. A "bridging dimer" mechanism is proposed to explain the formation of SDP vesicles. The SDP vesicles have a unilamellar structure with a size of ∼80 nm and an alkyl interdigitated degree of ∼25%, and exhibit size-selective permeability. Interestingly, a temperature-induced reversible transition between vesicles and α-gels was observed for the SDP/GuSalt/H2O systems when the SDP content is higher than 20 mM. The α-gels obtained are composed of vesicles and bilayer sheets, showing similar viscoelasticity to conventional gels, although their water content is as high as ∼98 wt%. The microviscosity of SDP vesicle membranes (ca. 35.79-49.34 mPa s at 25.0 °C) and the transition temperature between vesicles and α-gels (ca. 21.0-22.8 °C) are all dependent of the type of GuSalts. This work deepens the understanding of the aggregation behavior of MAPs and also provides valuable information for their practical applications.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
8
|
Vesicles composed of the single-chain amphiphile sodium monododecylphosphate: A model of protocell compartment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Vesicle formation of single-chain amphiphilic 4-dodecylbenzene sulfonic acid in water and micelle-to-vesicle transition induced by wet-dry cycles. SOFT MATTER 2021; 17:2490-2499. [PMID: 33503106 DOI: 10.1039/d0sm02229b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple single-chain amphiphiles (SCAs) can form vesicular structures in their single-component aqueous solutions, which has attracted great attention, but the understanding of their aggregation behavior is still limited. In this work, the aggregation behavior of 4-dodecylbenzene sulfonic acid (DBSA), a typical simple SCA, in water was investigated. The structure and properties of the aggregates formed were determined. In particular, the effect of wet-dry cycles on the structures of aggregates was examined. The mechanisms of aggregate formation and structural transition were discussed. It was found that the increase of DBSA concentration can drive the occurrence of a micelle-to-vesicle transition, showing a critical micelle concentration and critical vesicle concentration of ∼0.53 and 2.14 mM, respectively. The vesicles formed coexist with micelles in solution, with a unilamellar structure and ∼80 nm size, and exhibit size-selective permeability. In addition, the vesicles show remarkable stability upon long-term storage, exposure to high temperature, and freeze-thaw cycles. The H-bonding interaction between DBSA species and the interdigitated structure of alkyl chains in bilayers play a key role in the formation and stability of DBSA vesicles. Interestingly, it was found that the wet-dry cycle can induce a micelle-to-vesicle transition and an obvious increase in the size of the original vesicles, accompanied by the formation of some multilamellar vesicles. This work provides a better understanding of the aggregation behavior of simple SCAs in their single-component aqueous solutions.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
10
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
11
|
Abstract
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires racemic phospholipids and efficient synthetic routes for their production. Here we propose three synthetic pathways starting from glycerol or from racemic solketal (α,β-isopropylidene-dl-glycerol) for the gram-scale production (up to 4 g) of racemic phospholipid ester precursors. We describe and compare these synthetic pathways with literature data. Racemic phosphatidylcholines and phosphatidylethanolamines were obtained in good yields and high purity from 1,2-diacylglycerols. Racemic POPC (rac-POPC, (R,S)-1-palmitoyl-2-oleoyl-3-phosphocholine), was used as a model compound for the preparation of giant vesicles (GVs). Confocal laser scanning fluorescence microscopy was used to compare GVs prepared from enantiopure (R)-POPC), racemic POPC (rac-POPC) and a scalemic mixture (scal-POPC) of (R)-POPC enriched with rac-POPC. Vesicle morphology and size distribution were similar among the different (R)-POPC, rac-POPC and scal-POPC, while calcein entrapments in (R)-POPC and in scal-POPC were significantly distinct by about 10%.
Collapse
|
12
|
Toparlak ÖD, Karki M, Egas Ortuno V, Krishnamurthy R, Mansy SS. Cyclophospholipids Increase Protocellular Stability to Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903381. [PMID: 31523894 DOI: 10.1002/smll.201903381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Model protocells have long been constructed with fatty acids, because these lipids are prebiotically plausible and can, at least theoretically, support a protocell life cycle. However, fatty acid protocells are stable only within a narrow range of pH and metal ion concentration. This instability is particularly problematic as the early Earth would have had a range of conditions, and extant life is completely reliant on metal ions for catalysis and the folding and activity of biological polymers. Here, prebiotically plausible monoacyl cyclophospholipids are shown to form robust vesicles that survive a broad range of pH and high concentrations of Mg2+ , Ca2+ , and Na+ . Importantly, stability to Mg2+ and Ca2+ is improved by the presence of environmental concentrations of Na+ . These results suggest that cyclophospholipids, or lipids with similar characteristics, may have played a central role during the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö Duhan Toparlak
- Department CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Italy
| | - Megha Karki
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Veronica Egas Ortuno
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sheref S Mansy
- Department CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Italy
| |
Collapse
|
13
|
Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K +/Na + Selectivity in the Absence of Proteins. Life (Basel) 2020; 10:life10040039. [PMID: 32295197 PMCID: PMC7235748 DOI: 10.3390/life10040039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Two important ions, K+ and Na+, are unequally distributed across the contemporary phospholipid-based cell membrane because modern cells evolved a series of sophisticated protein channels and pumps to maintain ion gradients. The earliest life-like entities or protocells did not possess either ion-tight membranes or ion pumps, which would result in the equilibration of the intra-protocellular K+/Na+ ratio with that in the external environment. Here, we show that the most primitive protocell membranes composed of fatty acids, that were initially leaky, would eventually become less ion permeable as their membranes evolved towards having increasing phospholipid contents. Furthermore, these mixed fatty acid-phospholipid membranes selectively retain K+ but allow the passage of Na+ out of the cell. The K+/Na+ selectivity of these mixed fatty acid-phospholipid semipermeable membranes suggests that protocells at intermediate stages of evolution could have acquired electrochemical K+/Na+ ion gradients in the absence of any macromolecular transport machinery or pumps, thus potentially facilitating rudimentary protometabolism.
Collapse
|
14
|
Lipid constituents of model protocell membranes. Emerg Top Life Sci 2019; 3:537-542. [DOI: 10.1042/etls20190021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
Abstract
Primitive life must have possessed the essential features of modern cellular life, but without highly evolved proteins to perform dynamic functions such as nutrient transport and membrane remodeling. Here, we consider the membrane properties of protocells — minimal cells with hereditary material, capable of growth and division — and how these properties place restrictions on the components of the membrane. For example, the lipids of modern membranes are diacyl amphiphilic molecules containing well-over 20 carbons in total. Without proteins, these membranes are very stable and kinetically trapped. This inertness, combined with the need for enzymes to synthesize them, makes modern diacyl amphiphiles unsuitable candidates for the earliest membranes on Earth. We, therefore, discuss the progress made thus far with single-chained amphiphiles, including fatty acids and mixtures of fatty acids with related molecules, and the membrane-related research that must be undertaken to gain more insight into the origins of cellular life.
Collapse
|
15
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
16
|
Dalai P, Sahai N. Mineral–Lipid Interactions in the Origins of Life. Trends Biochem Sci 2019; 44:331-341. [DOI: 10.1016/j.tibs.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
17
|
How Prebiotic Chemistry and Early Life Chose Phosphate. Life (Basel) 2019; 9:life9010026. [PMID: 30832398 PMCID: PMC6462974 DOI: 10.3390/life9010026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
The very specific thermodynamic instability and kinetic stability of phosphate esters and anhydrides impart them invaluable properties in living organisms in which highly efficient enzyme catalysts compensate for their low intrinsic reactivity. Considering their role in protein biosynthesis, these properties raise a paradox about early stages: How could these species be selected in the absence of enzymes? This review is aimed at demonstrating that considering mixed anhydrides or other species more reactive than esters and anhydrides can help in solving the paradox. The consequences of this approach for chemical evolution and early stages of life are analysed.
Collapse
|
18
|
Bonfio C, Godino E, Corsini M, Fabrizi de Biani F, Guella G, Mansy SS. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat Catal 2018. [DOI: 10.1038/s41929-018-0116-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Fiore M, Madanamoothoo W, Berlioz-Barbier A, Maniti O, Girard-Egrot A, Buchet R, Strazewski P. Giant vesicles from rehydrated crude mixtures containing unexpected mixtures of amphiphiles formed under plausibly prebiotic conditions. Org Biomol Chem 2018; 15:4231-4240. [PMID: 28466946 DOI: 10.1039/c7ob00708f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Giant lipid vesicles resemble compartments of biological cells, mimicking them in their dimension, membrane structure and partly in their membrane composition. The spontanenous appearance of closed membranes composed of bilayers of self-assembling amphiphiles was likely a prerequisite for Darwinian competitive behavior to set in at the molecular level. Such compartments should be dynamic in their membrane composition (evolvable), and sufficiently stable to harbor macromolecules (leak-free), yet semi-permeable for reactive small molecules to get across the membrane (stay away from chemical equilibrium). Here we describe bottom-up experiments simulating prebiotic environments that support the formation of simple amphiphilic molecules capable of self-assembling into vesicular objects on the micrometer scale. Long-chain alkyl phosphates, together with related amphiphilic compounds, were formed under simulated prebiotic phosphorylation conditions by using cyanamide, a recognized prebiotic chemical activator and a precursor for several compound classes. Crude dry material of the thus obtained prebiotic mixtures formed multilamellar giant vesicles once rehydrated at the appropriate pH and in the presence of plausibly prebiotic co-surfactants, as observed by optical microscopy. The size and the shape of lipid aggregates tentatively suggest that prebiotic lipid assemblies could encapsulate peptides or nucleic acids that could be formed under similar chemical prebiotic conditions. The formation of prebiotic amphiphiles was monitored by using TLC, IR, NMR and ESI-MS and UPLC-HRMS. In addition we provide a spectroscopic analysis of cyanamide under simulated prebiotic conditions in the presence of phosphate sources and spectroscopic analysis of O-phosphorylethanolamine as a plausible precursor for phosphoethanolamine lipids.
Collapse
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bdv du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Fiore M. The synthesis of mono-alkyl phosphates and their derivatives: an overview of their nature, preparation and use, including synthesis under plausible prebiotic conditions. Org Biomol Chem 2018; 16:3068-3086. [DOI: 10.1039/c8ob00469b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleic acids, phospholipids and other organic phosphates play central roles in biological pathways.
Collapse
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Université de Lyon
- F-69622 Villeurbanne Cedex
- France
| |
Collapse
|
21
|
Maurer S. The Impact of Salts on Single Chain Amphiphile Membranes and Implications for the Location of the Origin of Life. Life (Basel) 2017; 7:life7040044. [PMID: 29135960 PMCID: PMC5745557 DOI: 10.3390/life7040044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/01/2022] Open
Abstract
One of the key steps in the origins of life was the formation of a membrane to separate protocells from their environment. These membranes are proposed to have been formed out of single chain amphiphiles, which are less stable than the dialkyl lipids used to form modern membranes. This lack of stability, specifically for decanoate, is often used to refute ocean locations for the origins of life. This review addresses the formation of membranes in hydrothermal-vent like conditions, as well as other environmental constraints. Specifically, single chain amphiphiles can form membranes at high sea salt concentrations (150 g/L), high temperatures (65 °C), and a wide pH range (2 to 10). It additionally discusses the major challenges and advantages of membrane formation in both ocean and fresh water locations.
Collapse
Affiliation(s)
- Sarah Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley St., New Britain, CT 06050, USA.
| |
Collapse
|
22
|
Hanczyc MM, Monnard PA. Primordial membranes: more than simple container boundaries. Curr Opin Chem Biol 2017; 40:78-86. [DOI: 10.1016/j.cbpa.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
|
23
|
Kee TP, Monnard PA. Chemical systems, chemical contiguity and the emergence of life. Beilstein J Org Chem 2017; 13:1551-1563. [PMID: 28904604 PMCID: PMC5564265 DOI: 10.3762/bjoc.13.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
Abstract
Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more "systemic" approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.
Collapse
Affiliation(s)
- Terrence P Kee
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
24
|
Sahai N, Kaddour H, Dalai P, Wang Z, Bass G, Gao M. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly. Sci Rep 2017; 7:43418. [PMID: 28266537 PMCID: PMC5339912 DOI: 10.1038/srep43418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Collapse
Affiliation(s)
- Nita Sahai
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA.,Department of Geology, University of Akron, Akron, OH 44325, USA.,Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Hussein Kaddour
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Punam Dalai
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Ziqiu Wang
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Garrett Bass
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Min Gao
- Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
25
|
Rasmussen S, Constantinescu A, Svaneborg C. Generating minimal living systems from non-living materials and increasing their evolutionary abilities. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150440. [PMID: 27431518 PMCID: PMC4958934 DOI: 10.1098/rstb.2015.0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 11/12/2022] Open
Abstract
We review lessons learned about evolutionary transitions from a bottom-up construction of minimal life. We use a particular systemic protocell design process as a starting point for exploring two fundamental questions: (i) how may minimal living systems emerge from non-living materials? and (ii) how may minimal living systems support increasingly more evolutionary richness? Under (i), we present what has been accomplished so far and discuss the remaining open challenges and their possible solutions. Under (ii), we present a design principle we have used successfully both for our computational and experimental protocellular investigations, and we conjecture how this design principle can be extended for enhancing the evolutionary potential for a wide range of systems.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
Collapse
Affiliation(s)
- Steen Rasmussen
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Adi Constantinescu
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Carsten Svaneborg
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
26
|
Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life (Basel) 2016; 6:life6020017. [PMID: 27043635 PMCID: PMC4931454 DOI: 10.3390/life6020017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles.
Collapse
|
27
|
Strazewski P. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self-evolve into Increased Complexity and Life-like Behaviour. Isr J Chem 2015. [DOI: 10.1002/ijch.201400175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|