2
|
in 't Zandt MH, Frank J, Yilmaz P, Cremers G, Jetten MSM, Welte CU. Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming. FEMS MICROBES 2020; 1:xtaa008. [PMID: 37333957 PMCID: PMC10117432 DOI: 10.1093/femsmc/xtaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 04/05/2024] Open
Abstract
Thermokarst lakes are large potential greenhouse gas (GHG) sources in a changing Arctic. In a warming world, an increase in both organic matter availability and temperature is expected to boost methanogenesis and potentially alter the microbial community that controls GHG fluxes. These community shifts are, however, challenging to detect by resolution-limited 16S rRNA gene-based approaches. Here, we applied full metagenome sequencing on long-term thermokarst lake sediment enrichments on acetate and trimethylamine at 4°C and 10°C to unravel species-specific responses to the most likely Arctic climate change scenario. Substrate amendment was used to mimic the increased organic carbon availability upon permafrost thaw. By performing de novo assembly, we reconstructed five high-quality and five medium-quality metagenome-assembled genomes (MAGs) that represented 59% of the aligned metagenome reads. Seven bacterial MAGs belonged to anaerobic fermentative bacteria. Within the Archaea, the enrichment of methanogenic Methanosaetaceae/Methanotrichaceae under acetate amendment and Methanosarcinaceae under trimethylamine (TMA) amendment was not unexpected. Surprisingly, we observed temperature-specific methanogenic (sub)species responses with TMA amendment. These highlighted distinct and potentially functional climate-induced shifts could not be revealed with 16S rRNA gene-based analyses. Unraveling these temperature- and nutrient-controlled species-level responses is essential to better comprehend the mechanisms that underlie GHG production from Arctic lakes in a warming world.
Collapse
Affiliation(s)
- Michiel H in 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Polen Yilmaz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
3
|
Maus D, Heinz J, Schirmack J, Airo A, Kounaves SP, Wagner D, Schulze-Makuch D. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Sci Rep 2020; 10:6. [PMID: 31913316 PMCID: PMC6949245 DOI: 10.1038/s41598-019-56267-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
The current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.
Collapse
Affiliation(s)
- Deborah Maus
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.,Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Jacob Heinz
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Janosch Schirmack
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Alessandro Airo
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA.,Department of Earth Science and Engineering, Imperial College, London, UK
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.,Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Dirk Schulze-Makuch
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany. .,GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, Stechlin, Germany.
| |
Collapse
|
4
|
Serrano P, Alawi M, de Vera JP, Wagner D. Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. ASTROBIOLOGY 2019; 19:197-208. [PMID: 30742498 DOI: 10.1089/ast.2018.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80°C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.
Collapse
Affiliation(s)
- Paloma Serrano
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 2 AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Mashal Alawi
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
| | - Jean-Pierre de Vera
- 3 German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Dirk Wagner
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 4 University of Potsdam, Institute of Geosciences, Potsdam, Germany
| |
Collapse
|
5
|
de Vera JP, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, Berger T, Bohmeier M, Cockell C, Demets R, de la Torre Noetzel R, Edwards H, Elsaesser A, Fagliarone C, Fiedler A, Foing B, Foucher F, Fritz J, Hanke F, Herzog T, Horneck G, Hübers HW, Huwe B, Joshi J, Kozyrovska N, Kruchten M, Lasch P, Lee N, Leuko S, Leya T, Lorek A, Martínez-Frías J, Meessen J, Moritz S, Moeller R, Olsson-Francis K, Onofri S, Ott S, Pacelli C, Podolich O, Rabbow E, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho LG, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolter D, Zucconi L. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. ASTROBIOLOGY 2019; 19:145-157. [PMID: 30742496 PMCID: PMC6383581 DOI: 10.1089/ast.2018.1897] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 01/07/2019] [Indexed: 06/01/2023]
Abstract
BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
Collapse
Affiliation(s)
- Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Mashal Alawi
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
| | - Theresa Backhaus
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Maria Bohmeier
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - René Demets
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Howell Edwards
- Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK
| | - Andreas Elsaesser
- Institut für experimentelle Physik, Experimentelle Molekulare Biophysik, Frei Universität Berlin, Berlin, Germany
| | | | - Annelie Fiedler
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Bernard Foing
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Frédéric Foucher
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - Jörg Fritz
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Herzog
- TH Wildau (Technical University of Applied Sciences), Wildau, Germany
| | - Gerda Horneck
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Heinz-Wilhelm Hübers
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Björn Huwe
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Jasmin Joshi
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
- Hochschule für Technik HSR Rapperswil, Institute for Landscape and Open Space, Rapperswil, Switzerland
| | | | - Martha Kruchten
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Peter Lasch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Thomas Leya
- Extremophile Research & Biobank CCCryo, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Andreas Lorek
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | | | - Joachim Meessen
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Sophie Moritz
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sieglinde Ott
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Olga Podolich
- Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - Paloma Serrano
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Ulrich Szewzyk
- TU Berlin, Institute of Environmental Technology, Environmental Microbiology, Berlin, Germany
| | - Cyprien Verseux
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Dirk Wagner
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Frances Westall
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - David Wolter
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|