1
|
Li C, Zhang X, Ye T, Li X, Wang G. Protection and Damage Repair Mechanisms Contributed To the Survival of Chroococcidiopsis sp. Exposed To a Mars-Like Near Space Environment. Microbiol Spectr 2022; 10:e0344022. [PMID: 36453906 PMCID: PMC9769825 DOI: 10.1128/spectrum.03440-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chroococcidiopsis spp. can withstand extremely harsh environments, including a Mars-like environment. However, studies are lacking on the molecular mechanisms of Chroococcidiopsis sp. surviving in Mars-like environments. In the HH-21-5 mission, the desert cyanobacterium Chroococcidiopsis sp. was exposed to a Mars-like environment (near space; 35 km altitude) for 4 h, and a single-factor environment of near space was simulated on the ground. We investigated the survival and endurance mechanisms of Chroococcidiopsis sp. ASB-02 after exposing it to near space by studying its physiological and transcriptional properties. After the exposure, Chroococcidiopsis sp. ASB-02 exhibited high cell viability, although photosystem II activity decreased and the levels of reactive oxygen species increased. The single-factor simulation experiments revealed that for the survival of Chroococcidiopsis sp. ASB-02 in near space, UV radiation was the most important limiting factor, and it was followed by temperature. The near space environment triggered multiple metabolic pathway responses in Chroococcidiopsis sp. ASB-02. The upregulation of extracellular polysaccharides as well as carotenoid and scytonemin biosynthesis genes in response to UV radiation attenuated the extent of radiation reaching the cells. At the same time, genes related to protein synthesis were upregulated in response to the low temperature, overcoming the decrease in metabolic activity that was caused by the low temperature. In near space and after rehydration, the genes involved in various DNA and photosystem II repair pathways were upregulated. This reflected the damage to the DNA and photosystem II protein subunits in cells during the flight and suggested that repair mechanisms play an important role in the recovery of Chroococcidiopsis sp. ASB-02. IMPORTANCE This study reported that the protective and repair mechanisms of Chroococcidiopsis sp. ASB-02 contributed to its endurance ability in a Mars-like near space environment. In Chroococcidiopsis sp. ASB-02, a Mars-like near space environment activated the expression of genes involved in extracellular polysaccharides (EPS), carotenoid, scytonemin, and protein syntheses, which provided additional protection. Additionally, the cell damage repair process enhanced the recovery rate of Chroococcidiopsis sp. ASB-02 after the flight. This study will help to enhance the understanding of the tolerance mechanism of Chroococcidiopsis sp. and to provide important guidance as to the survival requirements for microbial life in a Mars-like environment.
Collapse
Affiliation(s)
- Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianyuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Billi D, Verseux C, Fagliarone C, Napoli A, Baqué M, de Vera JP. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. ASTROBIOLOGY 2019; 19:158-169. [PMID: 30742497 DOI: 10.1089/ast.2017.1807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.
Collapse
Affiliation(s)
- Daniela Billi
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Alessandro Napoli
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| | - Jean-Pierre de Vera
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| |
Collapse
|
3
|
Kite ES, Gaidos E, Onstott TC. Valuing Life-Detection Missions. ASTROBIOLOGY 2018; 18:834-840. [PMID: 30035639 DOI: 10.1089/ast.2017.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
4
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Is Searching for Martian Life a Priority for the Mars Community? ASTROBIOLOGY 2018; 18:101-107. [PMID: 29359967 PMCID: PMC5820680 DOI: 10.1089/ast.2017.1772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York, USA
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
5
|
Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, Whyte LG. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities. Front Microbiol 2017; 8:2594. [PMID: 29326684 PMCID: PMC5742409 DOI: 10.3389/fmicb.2017.02594] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.
Collapse
Affiliation(s)
- J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Katherine Hindson
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Kelly Chan-Yam
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Evangelos Marcolefas
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| |
Collapse
|
6
|
Nelson M. Mars water discoveries--implications for finding ancient and current life. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:A1-A5. [PMID: 26553643 DOI: 10.1016/j.lssr.2015.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mark Nelson
- Institute of Ecotechnics, Santa Fe, NM/London, UK; Biospheric Design Division, Global Ecotechnics Corp., Santa Fe, NM, United States.
| |
Collapse
|
7
|
|