1
|
Wang J, Wang T, Zeng X, Wang S, Yu Z, Wei Y, Cai M, Chu XY, Chen YZ, Zhao Y. Database of space life investigations and bioinformatics of microbiology in extreme environments. Front Microbiol 2022; 13:1017773. [PMID: 36406421 PMCID: PMC9668873 DOI: 10.3389/fmicb.2022.1017773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 08/03/2023] Open
Abstract
Biological experiments performed in space crafts like space stations, space shuttles, and recoverable satellites has enabled extensive spaceflight life investigations (SLIs). In particular, SLIs have revealed distinguished space effects on microbial growth, survival, metabolite production, biofilm formation, virulence development and drug resistant mutations. These provide unique perspectives to ground-based microbiology and new opportunities for industrial pharmaceutical and metabolite productions. SLIs are with specialized experimental setups, analysis methods and research outcomes, which can be accessed by established databases National Aeronautics and Space Administration (NASA) Life Science Data Archive, Erasmus Experiment Archive, and NASA GeneLab. The increasing research across diverse fields may be better facilitated by databases of convenient search facilities and categorized presentation of comprehensive contents. We therefore developed the Space Life Investigation Database (SpaceLID) http://bidd.group/spacelid/, which collected SLIs from published academic papers. Currently, this database provides detailed menu search facilities and categorized contents about the studied phenomena, materials, experimental procedures, analysis methods, and research outcomes of 448 SLIs of 90 species (microbial, plant, animal, human), 81 foods and 106 pharmaceuticals, including 232 SLIs not covered by the established databases. The potential applications of SpaceLID are illustrated by the examples of published experimental design and bioinformatic analysis of spaceflight microbial phenomena.
Collapse
Affiliation(s)
- Junyong Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zijie Yu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yiqi Wei
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Mengna Cai
- Institute of Civil Design, Tsinghua University, Beijing, China
| | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Morrison MD, Nicholson WL. Comparisons of Transcriptome Profiles from Bacillus subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of Concordance. ASTROBIOLOGY 2020; 20:1498-1509. [PMID: 33074712 DOI: 10.1089/ast.2020.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although clinostats have long been used in space microbiology studies as ground-based analogs of spaceflight, few studies to date have systematically compared -omics data from clinostats versus spaceflight. This study compared the transcriptomic response of the Gram-positive bacterium Bacillus subtilis flown in space with corresponding transcriptomes derived from 2-D clinostat (High Aspect Ratio Vessel: HARV) experiments performed under the same conditions of bacterial strain, growth medium, temperature, and incubation time. High-quality total RNA (RNA Integrity Number >9.6) was isolated from multiple biological replicates from each treatment, transcripts were quantified by RNA-seq, and raw data was processed through a previously described standardized bioinformatics pipeline. Transcriptome data sets from spaceflight-grown and corresponding clinostat-grown cells were compared by using three different methods: (i) principal component analysis, (ii) analysis of differentially expressed genes, and (iii) gene set enrichment analysis of KEGG pathways. All three analyses found a low degree of concordance between the spaceflight and corresponding clinostat transcriptome data sets, ranging from 0.9% to 5.3% concordance. These results are in agreement with prior studies that also revealed low concordances between spaceflight and clinostat transcriptomes of the Gram-negative bacteria Rhodospirillum rubrum and Pseudomonas aeruginosa. The results are discussed from the perspective of several potential confounding factors, and suggestions are offered with the aim of achieving increased concordance between clinostat and spaceflight data.
Collapse
Affiliation(s)
- Michael D Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| |
Collapse
|
3
|
Mukhopadhyay S, Bagh S. A microgravity responsive synthetic genetic device in Escherichia coli. Biosens Bioelectron 2020; 167:112462. [DOI: 10.1016/j.bios.2020.112462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 01/23/2023]
|
4
|
Majumder P, Roy K, Bagh S, Mukhopadhyay D. Receptor tyrosine kinases (RTKs) consociate in regulatory clusters in Alzheimer's disease and type 2 diabetes. Mol Cell Biochem 2019; 459:171-182. [PMID: 31154588 DOI: 10.1007/s11010-019-03560-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/27/2019] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) share the common hallmark of insulin resistance. It is conjectured that receptor tyrosine kinases (RTKs) play definitive roles in the process. To decipher the signaling overlap behind this phenotypic resemblance, the activity status of RTKs is probed in post-mortem AD and T2D tissues and cell models. Activities of only about one-third changed in a similar fashion, whereas about half of them showed opposite outcomes when exposed to contrasting signals akin to AD and T2D. Interestingly, irrespective of disease type, RTKs with enhanced and compromised activities clustered distinctly, indicating separate levels of regulations. Similar regulatory mechanisms within an activity cluster could be inferred, which have potential to impact future therapeutic developments.
Collapse
Affiliation(s)
- Piyali Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Block-AF, Sector-1, Bidhannagar, Kolkata, WB, 700064, India
| | - Kasturi Roy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Block-AF, Sector-1, Bidhannagar, Kolkata, WB, 700064, India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Block-AF, Sector-1, Bidhannagar, Kolkata, WB, 700064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Block-AF, Sector-1, Bidhannagar, Kolkata, WB, 700064, India.
| |
Collapse
|
5
|
Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 2018; 4:25. [PMID: 30588486 PMCID: PMC6299092 DOI: 10.1038/s41526-018-0060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome. To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity (LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the global regulator Hfq (∆hfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V. fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary phase growth. The ∆hfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
Collapse
|
6
|
Zhao X, Yu Y, Zhang X, Huang B, Bai P, Xu C, Li D, Zhang B, Liu C. Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China's Shenzhou 11 spacecraft. Microbiologyopen 2018; 8:e00763. [PMID: 30379419 PMCID: PMC6562233 DOI: 10.1002/mbo3.763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
China has prepared for construction of a space station by the early 2020s. The mission will require astronauts to stay on the space station for at least 180 days. Microbes isolated from the International Space Station (ISS) have shown profound resistance to clinical antibiotics and environmental stresses. Previous studies have demonstrated that the space environment could affect microbial survival, growth, virulence, biofilms, metabolism, as well as their antibiotic‐resistant phenotypes. Furthermore, several studies have reported that astronauts experience a decline in their immunity during long‐duration spaceflights. Monitoring microbiomes in the ISS or the spacecraft will be beneficial for the prevention of infection among the astronauts during spaceflight. The development of a manned space program worldwide not only provides an opportunity to investigate the impact of this extreme environment on opportunistic pathogenic microbes, but also offers a unique platform to detect mutations in pathogenic bacteria. Various microorganisms have been carried on a spacecraft for academic purposes. Acinetobacter baumannii is a common multidrug‐resistant bacterium often prevalent in hospitals. Variations in the ability to cope with environmental hazards increase the chances of microbial survival. Our study aimed to compare phenotypic variations and analyze genomic and transcriptomic variations in A. baumannii among three different groups: SS1 (33 days on the Shenzhou 11 spacecraft), GS1 (ground control), and Aba (reference strain). Consequently, the biofilm formation ability of the SS1 strain decreased after 33 days of spaceflight. Furthermore, high‐throughput sequencing revealed that some differentially expressed genes were downregulated in the SS1 strain compared with those in the GS1 strain. In conclusion, this present study provides insights into the environmental adaptation of A. baumannii and might be useful for understanding changes in the opportunistic pathogenic microbes on our spacecraft and on China's future ISS.
Collapse
Affiliation(s)
- Xian Zhao
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Chou Xu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Morrison MD, Nicholson WL. Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial "spaceflight response". Sci Rep 2018; 8:14403. [PMID: 30258082 PMCID: PMC6158273 DOI: 10.1038/s41598-018-32818-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Several studies have been undertaken with the goal of understanding how bacterial transcriptomes respond to the human spaceflight environment. However, these experiments have been conducted using a variety of organisms, media, culture conditions, and spaceflight hardware, and to date no cross-experiment analyses have been performed to uncover possible commonalities in their responses. In this study, eight bacterial transcriptome datasets deposited in NASA's GeneLab Data System were standardized through a common bioinformatics pipeline then subjected to meta-analysis to identify among the datasets (i) individual genes which might be significantly differentially expressed, or (ii) gene sets which might be significantly enriched. Neither analysis resulted in identification of responses shared among all datasets. Principal Component Analysis of the data revealed that most of the variation in the datasets derived from differences in the experiments themselves.
Collapse
Affiliation(s)
- Michael D Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA.
| |
Collapse
|