1
|
Berera A, Brener DJ, Cockell CS. Detecting Microbiology in the Upper Atmosphere: Relative-Velocity Filtered Sampling. ASTROBIOLOGY 2023; 23:469-475. [PMID: 36800170 DOI: 10.1089/ast.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The purpose of this article is to reopen from a practical perspective the question of the extent in altitude of Earth's biosphere. We make a number of different suggestions for how searches for biological material could be conducted in the mesosphere and lower thermosphere, colloquially referred to as the "ignore-osphere" because it has been generally ignored in the meteorological community compared to other regions. Relatively recent technological advances such as CubeSats in very low Earth orbit or more standard approaches such as the rocket-borne MAGIC meteoric smoke particle sampler are shown as potentially viable for sampling biological material in the ignore-osphere. The issue of contamination is discussed, and a potential solution to the problem is proposed by means of a new detector design that filters for particles based on their size and relative velocity to the detector.
Collapse
Affiliation(s)
- Arjun Berera
- The Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | - Daniel J Brener
- The Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
2
|
Berera A, Brener DJ. On the force of vertical winds in the upper atmosphere: consequences for small biological particles. Proc Math Phys Eng Sci 2022; 478:20210626. [PMID: 35153615 PMCID: PMC8753144 DOI: 10.1098/rspa.2021.0626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022] Open
Abstract
For many decades, vertical winds have been observed at high altitudes of the Earth's atmosphere, in the mesosphere and thermosphere layers. These observations have been used with a simple one-dimensional model to make estimates of possible altitude climbs by biologically sized particles deeper into the thermosphere, in the rare occurrence where such a particle has been propelled to these altitudes. A particle transport mechanism is suggested from the literature on auroral arcs, indicating that an altitude of 120 km could be reached by a nanometre-sized particle, which is higher than the measured 77 km limit on the biosphere. Vertical wind observations in the upper mesophere and lower thermosphere are challenging to make and so we suggest that particles could reach altitudes greater than 120 km, depending on the magnitude of the vertical wind. Applications of the larger vertical winds in the upper atmosphere to astrobiology and climate science are explored.
Collapse
Affiliation(s)
- A Berera
- The Higgs Centre for Theoretical Physics, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - D J Brener
- The Higgs Centre for Theoretical Physics, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
3
|
On Mautner-Type Probability of Capture of Intergalactic Meteor Particles by Habitable Exoplanets. SCI 2019. [DOI: 10.3390/sci1030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both macro and microprojectiles (e.g., interplanetary, interstellar and even intergalactic material) are seen as important vehicles for the exchange of potential (bio)material within our solar system as well as between stellar systems in our Galaxy. Accordingly, this requires estimates of the impact probabilities for different source populations of projectiles, including for intergalactic meteor particles which have received relatively little attention since considered as rare events (discrete occurrences that are statistically improbable due to their very infrequent appearance). We employ the simple but comprehensive model of intergalactic microprojectile capture by the gravity of exoplanets which enables us to estimate the map of collisional probabilities for an available sample of exoplanets in habitable zones around host stars. The model includes a dynamical description of the capture adopted from Mautner model of interstellar exchange of microparticles and changed for our purposes. We use statistical and information metrics to calculate probability map of intergalactic meteorite particle capture. Moreover, by calculating the entropy index map we estimate the concentration of these rare events. We further adopted a model from immigration theory, to show that the time dependent distribution of single molecule immigration of material indicates high survivability of the immigrated material taking into account birth and death processes on our planet. At present immigration of material can not be observationally constrained but it seems reasonable to think that it will be possible in the near future, and to use it along other proposed parameters for life sustainability on some planet.
Collapse
|
4
|
On Mautner-Type Probability of Capture of Intergalactic Meteor Particles by Habitable Exoplanets. SCI 2019. [DOI: 10.3390/sci1020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both macro and microprojectiles (e.g., interplanetary, interstellar and even intergalactic material)are seen as important vehicles for the exchange of potential (bio)material within our solar system as wellas between stellar systems in our Galaxy. Accordingly, this requires estimates of the impact probabilitiesfor different source populations of projectiles, including for intergalactic meteor particles which havereceived relatively little attention since considered as rare events (discrete occurrences that are statisticallyimprobable due to their very infrequent appearance). We employ the simple but yet comprehensivemodel of intergalactic microprojectile capture by the gravity of exoplanets which enables us to estimatethe map of collisional probabilities for an available sample of exoplanets in habitable zones around hoststars. The model includes a dynamical description of the capture adopted from Mautner model ofinterstellar exchange of microparticles and changed for our purposes. We use statistical and informationmetrics to calculate probability map of intergalactic meteorite particle capture. Moreover, by calculatingthe entropy index map we measure the concentration of these rare events. We further adopted a modelfrom immigration theory, to show that the transient distribution of birth/death/immigration of materialfor the simplest case has a high value.
Collapse
|
5
|
On Mautner-Type Probability of Capture of Intergalactic Meteor Particles by Habitable Exoplanets. SCI 2019. [DOI: 10.3390/sci1020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both macro and microprojectiles (e.g., interplanetary, interstellar and even intergalactic material) are seen as an important vehicle for the exchange of (bio)material within our solar system as well as between stellar systems in our Galaxy. Accordingly, this requires estimates of the impact probabilities for different source populations of projectiles, specifically for intergalactic meteor particles which have received relatively little attention since considered as rare events (discrete occurrences that are statistically improbable due to their very infrequent appearance). We employ the simple but yet comprehensive model of intergalactic microprojectile capture by the gravity of exoplanets which enables us to estimate the map of collisional probabilities for an available sample of exoplanets in habitable zones around host stars. The model includes a dynamical description of the caption adopted from Mautner model of interstellar exchange of microparticles and changed for our purposes. We use statistical and information metrics to calculate probability map of intergalactic meteorite particle capture. Moreover, by calculating the entropy index map we measure the concentration of these rare events. By adopting a model from immigration theory, we show that the transient distribution of birth/death/immigration of material for the simplest case has a high value.
Collapse
|
6
|
Veras D, Armstrong DJ, Blake JA, Gutiérrez-Marcos JF, Jackson AP, Schäefer H. Dynamical and Biological Panspermia Constraints Within Multi-planet Exosystems. ASTROBIOLOGY 2018; 18:1106-1122. [PMID: 30095987 DOI: 10.1089/ast.2017.1786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As discoveries of multiple planets in the habitable zone of their parent star mount, developing analytical techniques to quantify extrasolar intra-system panspermia will become increasingly important. Here, we provide user-friendly prescriptions that describe the asteroid impact characteristics which would be necessary to transport life both inwards and outwards within these systems within a single framework. Our focus is on projectile generation and delivery and our expressions are algebraic, eliminating the need for the solution of differential equations. We derive a probability distribution function for life-bearing debris to reach a planetary orbit, and describe the survival of micro-organisms during planetary ejection, their journey through interplanetary space, and atmospheric entry.
Collapse
Affiliation(s)
- Dimitri Veras
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - David J Armstrong
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - James A Blake
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - Jose F Gutiérrez-Marcos
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| | - Alan P Jackson
- 4 Centre for Planetary Sciences, University of Toronto at Scarborough , Toronto, Canada
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Hendrik Schäefer
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| |
Collapse
|
7
|
Onofri S, Selbmann L, Pacelli C, de Vera JP, Horneck G, Hallsworth JE, Zucconi L. Integrity of the DNA and Cellular Ultrastructure of Cryptoendolithic Fungi in Space or Mars Conditions: A 1.5-Year Study at the International Space Station. Life (Basel) 2018; 8:E23. [PMID: 29921763 PMCID: PMC6027225 DOI: 10.3390/life8020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
The black fungi Cryomyces antarcticus and Cryomyces minteri are highly melanized and are resilient to cold, ultra-violet, ionizing radiation and other extreme conditions. These microorganisms were isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys (Antarctica) and studied in Low Earth Orbit (LEO), using the EXPOSE-E facility on the International Space Station (ISS). Previously, it was demonstrated that C. antarcticus and C. minteri survive the hostile conditions of space (vacuum, temperature fluctuations, and the full spectrum of extraterrestrial solar electromagnetic radiation), as well as Mars conditions that were simulated in space for a 1.5-year period. Here, we qualitatively and quantitatively characterize damage to DNA and cellular ultrastructure in desiccated cells of these two species, within the frame of the same experiment. The DNA and cells of C. antarcticus exhibited a higher resistance than those of C. minteri. This is presumably attributable to the thicker (melanized) cell wall of the former. Generally, DNA was readily detected (by PCR) regardless of exposure conditions or fungal species, but the C. minteri DNA had been more-extensively mutated. We discuss the implications for using DNA, when properly shielded, as a biosignature of recently extinct or extant life.
Collapse
Affiliation(s)
- Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Jean Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstreet 2, 12489 Berlin, Germany.
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170 Köln, Germany.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|