1
|
Lewis JMT, Bower DM, Pavlov AA, Li X, Wahl SZ, Eigenbrode JL, McAdam AC. Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa. ASTROBIOLOGY 2024; 24:1166-1186. [PMID: 39587956 DOI: 10.1089/ast.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.
Collapse
Affiliation(s)
- James M T Lewis
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Dina M Bower
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
| | | | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Sarinah Z Wahl
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Southeastern Universities Research Association, Washington, District of Columbia, USA
| | | | - Amy C McAdam
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
2
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
3
|
Chitnavis S, Gray C, Rousouli I, Gillen E, Mullineaux CW, Haworth TJ, Duffy CDP. Optimizing photosynthetic light-harvesting under stars: simple and general antenna models. PHOTOSYNTHESIS RESEARCH 2024; 162:75-92. [PMID: 39256265 DOI: 10.1007/s11120-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, 400 < λ < 700 nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle. Here, we hypothesize that this is partly due to the different ways they harvest light, reflecting some general rule that determines how photosynthetic antenna structures may evolve under different stars. We construct a simple thermodynamic model of an oxygenic antenna-reaction centre supercomplex and determine the optimum structure, size and absorption spectrum under light from several star types. For the hotter G (e.g. the Sun) and K-stars, a small modular antenna is optimal and qualitatively resembles the PSII-LHCII supercomplex of higher plants. For the cooler M-dwarfs, a very large antenna with a steep 'energy funnel' is required, resembling the cyanobacterial phycobilisome. For the coolest M-dwarfs an upper limit is reached, where increasing antenna size further is subject to steep diminishing returns in photosynthetic output. We conclude that G- and K-stars could support a range of niches for oxygenic photo-autotrophs, including high-light adapted canopy vegetation that may generate detectable bio-signatures. M-dwarfs may only be able to support low light-adapted organisms that have to invest considerable resources in maintaining a large antenna. This may negatively impact global coverage and therefore detectability.
Collapse
Affiliation(s)
- Samir Chitnavis
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Callum Gray
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Ifigeneia Rousouli
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Edward Gillen
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Thomas J Haworth
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher D P Duffy
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK.
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK.
| |
Collapse
|
4
|
Cockell CS, Hallsworth JE, McMahon S, Kane SR, Higgins PM. The Concept of Life on Venus Informs the Concept of Habitability. ASTROBIOLOGY 2024; 24:628-634. [PMID: 38800952 DOI: 10.1089/ast.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen R Kane
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Peter M Higgins
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Berliner AJ, Zezulka S, Hutchinson GA, Bertoldo S, Cockell CS, Arkin AP. Domains of life sciences in spacefaring: what, where, and how to get involved. NPJ Microgravity 2024; 10:12. [PMID: 38287000 PMCID: PMC10825151 DOI: 10.1038/s41526-024-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Affiliation(s)
- Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Program in Aerospace Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Spencer Zezulka
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- School of Information, University of California Berkeley, Berkeley, CA, USA
| | - Gwyneth A Hutchinson
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Sophia Bertoldo
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Flores JC. Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1598. [PMID: 36359690 PMCID: PMC9689301 DOI: 10.3390/e24111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
This contribution considers proto-cell structures associated with asymmetries, mainly gravity, in the framework of reaction-diffusion. There are equivalent solutions for defined morphogen parameters in the equations that allow for defining proto-tissue complexity and configurational entropy. Using RNA data, improvements to the complexity and entropy due to the Earth's gravity are presented. The theoretical proto-tissues complexity estimation, as a function of arbitrary surface gravity, is likewise proposed. In this sense, hypothetical aggregates of proto-cells on Mars would have a lower complexity than on Earth, which is equally valid for the Moon. Massive planets, or exoplanets like BD+20594b, could have major proto-tissue complexity and, eventually, rich biodiversity.
Collapse
Affiliation(s)
- Juan César Flores
- Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7-D, Arica 1000000, Chile
| |
Collapse
|
7
|
Timmis K, Hallsworth JE. The darkest microbiome-a post-human biosphere. Microb Biotechnol 2022; 15:176-185. [PMID: 34843168 PMCID: PMC8719803 DOI: 10.1111/1751-7915.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Microbial technology is exceptional among human activities and endeavours in its range of applications that benefit humanity, even exceeding those of chemistry. What is more, microbial technologists are among the most creative scientists, and the scope of the field continuously expands as new ideas and applications emerge. Notwithstanding this diversity of applications, given the dire predictions for the fate of the surface biosphere as a result of current trajectories of global warming, the future of microbial biotechnology research must have a single purpose, namely to help secure the future of life on Earth. Everything else will, by comparison, be irrelevant. Crucially, microbes themselves play pivotal roles in climate (Cavicchioli et al., Nature Revs Microbiol 17: 569-586, 2019). To enable realization of their full potential in humanity's effort to survive, development of new and transformative global warming-relevant technologies must become the lynchpin of microbial biotechnology research and development. As a consequence, microbial biotechnologists must consider constraining their usual degree of freedom, and re-orienting their focus towards planetary-biosphere exigences. And they must actively seek alliances and synergies with others to get the job done as fast as humanly possible; they need to enthusiastically embrace and join the global effort, subordinating where necessary individual aspirations to the common good (the amazing speed with which new COVID-19 diagnostics and vaccines were developed and implemented demonstrates what is possible given creativity, singleness of purpose and funding). In terms of priorities, some will be obvious, others less so, with some only becoming revealed after dedicated effort yields new insights/opens new vistas. We therefore refrain from developing a priority list here. Rather, we consider what is likely to happen to the Earth's biosphere if we (and the rest of humanity) fail to rescue it. We do so with the aim of galvanizing the formulation and implementation of strategic and financial science policy decisions that will maximally stimulate the development of relevant new microbial technologies, and maximally exploit available technologies, to repair existing environmental damage and mitigate against future deterioration.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | |
Collapse
|