1
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
2
|
McCubbin FM, Farley KA, Harrington AD, Hutzler A, Smith CL. Mars Sample Return: From collection to curation of samples from a habitable world. Proc Natl Acad Sci U S A 2025; 122:e2404253121. [PMID: 39761397 PMCID: PMC11745348 DOI: 10.1073/pnas.2404253121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
NASA's Mars 2020 mission has initiated collection of samples from Mars' Jezero Crater, which has a wide range of ancient rocks and rock types from lavas to lacustrine sedimentary rocks. The Mars Sample Return (MSR) Campaign, a joint effort between NASA and ESA, aims to bring the Perseverance collection back to Earth for intense scientific investigation. As the first return of samples from a habitable world, there are important challenges to overcome for the successful implementation of the MSR Campaign from the point of sample collection on Mars to the long-term curation of the samples on Earth. In particular, the successful execution of planetary protection protocols adds well-warranted complexity to every step of the process from the two MSR Program flight elements to the ground element at the sample receiving facility (SRF). In this contribution, we describe the architecture of the MSR Campaign, with a focus on infrastructure needs for the curation (i.e., the clean storage, processing, and allocation) of pristine Martian samples. Curation is a science-enabling and planetary protection-enabling activity, and the curation practices described in this contribution for the SRF and any long-term curation facility will enable the sample safety assessment, initial scientific investigations of the samples, and establish the MSR collection as a scientific resource that will enable generations of science and discovery through studies of the returned Mars samples. The planetary protection and curation processes established for MSR will provide critical insights into potential future sample return missions from other habitable worlds like Enceladus and Europa.
Collapse
Affiliation(s)
- Francis M. McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX77058
| | - Kenneth A. Farley
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA91109
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Andrea D. Harrington
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX77058
| | - Aurore Hutzler
- European Space Agency/European Space Research & Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Caroline L. Smith
- Science Group, Natural History Museum, LondonSW7 5BD, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| |
Collapse
|
3
|
Preston LJ, Jungblut AD, Montgomery W, Ballard CJ, Wilbraham J. The Preservation and Spectral Detection of Historic Museum Specimen Microbial Mat Biosignatures Within Martian Dust: Lessons Learned for Mars Exploration and Sample Return. ASTROBIOLOGY 2024; 24:684-697. [PMID: 38979614 DOI: 10.1089/ast.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.
Collapse
Affiliation(s)
- Louisa J Preston
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Wren Montgomery
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Connor J Ballard
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
| | - Jo Wilbraham
- Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
4
|
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, Zolotov M. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team. ASTROBIOLOGY 2024; 24:443-488. [PMID: 38768433 DOI: 10.1089/ast.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Mark A Sephton
- Imperial College London, Earth Science and Engineering, South Kensington Campus, London, UK
| | - Kate Freeman
- The Pennsylvania State University, Geosciences, University Park, Pennsylvania, USA
| | - Lindsay Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Fiona Thiessen
- European Space Research and Technology Centre, Noordwijk, South Holland, Netherlands
| | - Kathleen Benison
- West Virginia University, Department of Geology and Geography, Morgantown, West Virginia, USA
| | - Brandi Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Astrochemistry, Greenbelt, Maryland, USA
| | - Mihaela Glamoclija
- Rutgers University Newark College of Arts and Sciences, Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Raina Gough
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado, USA
| | - Silvano Onofri
- University of Tuscia, Department of Ecological and Biological Sciences, Largo dell'Università snc Viterbo, Italy
| | | | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Sara Russell
- Natural History Museum, Department of Earth Sciences, London, UK
| | - Eva E Stüeken
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, Fife, UK
| | - Michael Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Mikhail Zolotov
- Arizona State University, School of Earth and Space Exploration, Tempe, Arizona, USA
| |
Collapse
|
5
|
Osterhout JT, Farley KA, Wadhwa M, Treffkorn J, Kulczycki E. Helium Leak Rate Measurements of Flight-like Mars 2020 Sample Tubes. ASTROBIOLOGY 2024; 24:36-43. [PMID: 38108628 PMCID: PMC10795500 DOI: 10.1089/ast.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/08/2023] [Indexed: 12/19/2023]
Abstract
The sample tubes on board NASA's Perseverance rover are designed to contain rocks, regolith, and atmospheric gases and are hermetically sealed on the surface of Mars to minimize sample loss, alteration, and contamination. Following a robust testing program during mission development, it was determined that the helium (He) leak rates of flight-like sample tubes sealed under a range of conditions were typically no greater than ∼10-10 standard cubic centimeters per second (scc/s); leak rates below this value could not be measured since this is the detection limit of commercially available He leak detectors. This limit was adequate to meet mission requirements. However, some scientific objectives could be compromised by sample tube leak rates even below 10-10 scc/s, thus motivating a more sensitive technique for establishing leak rates. This study investigated He leak rates on six flight-like sample tubes using a static mode mass spectrometer. Room temperature He leak rates of the six sample tubes ranged from ∼8.8 × 10-17 to ∼4.6 × 10-14 scc/s. One sample tube was analyzed at eight different temperatures, ranging from -51°C to +42°C, and yielded He leak rates correlated with temperature that varied from ∼1.7 × 10-15 to ∼1.4 × 10-13 scc/s, respectively. Our results confirm and extend previous findings demonstrating that the Mars 2020 sample tube seals are likely to be very leak-tight, with leak rates <10-13 scc/s. These leak rates are sufficiently low that the impact of gas egress or ingress is expected to be negligible.
Collapse
Affiliation(s)
- Jeffrey T. Osterhout
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Kenneth A. Farley
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Meenakshi Wadhwa
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Jonathan Treffkorn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Eric Kulczycki
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Basapathi Raghavendra J, Zorzano MP, Kumaresan D, Martin-Torres J. DNA sequencing at the picogram level to investigate life on Mars and Earth. Sci Rep 2023; 13:15277. [PMID: 37714862 PMCID: PMC10504319 DOI: 10.1038/s41598-023-42170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
DNA is an incontrovertible biosignature whose sequencing aids in species identification, genome functionality, and evolutionary relationships. To study life within the rocks of Earth and Mars, we demonstrate, in an ISO5 clean room, a procedure based on nanopore technology that correctly identifies organisms at picogram levels of DNA without amplification. Our study with E. coli and S. cerevisiae DNA samples showed that MinION sequencer (Oxford Nanopore Technologies) can unequivocally detect and characterise microbes with as little as 2 pg of input with just 50 active nanopores. This result is an excellent advancement in sensitivity, immediately applicable to investigating low biomass samples. This value is also at the level of possible background contamination associated with the reagents and the environment. Cultivation of natural and heat-treated Martian analogue (MMS-2) regolith samples, exposed to atmospheric water vapour or in increasing water concentrations, led to the extraction of 600-1000 pg of DNA from 500 mg of soil. Applying the low detectability technology enabled through MinION sequencer for a natural low biomass setting, we characterised the dry MMS-2 and found few soil-related organisms and airborne contaminants. The picogram detection level and the procedure presented here, may be of interest for the future Mars sample Return program, and the life research and planetary protection studies that will be implemented through the sample safety assessment.
Collapse
Affiliation(s)
- Jyothi Basapathi Raghavendra
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, Scotland.
| | - Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Deepak Kumaresan
- School of Biological Sciences, Queen's University Belfast (QUB), Belfast, BT9 5DL, Northern Ireland
| | - Javier Martin-Torres
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, Scotland
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), 18100, Granada, Spain
| |
Collapse
|
7
|
Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE. Mars Sample Return (MSR): Planning for Returned Sample Science. ASTROBIOLOGY 2022; 22:S1-S4. [PMID: 34904887 DOI: 10.1089/ast.2021.0198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
| | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| |
Collapse
|
8
|
Carrier BL, Beaty DW, Hutzler A, Smith AL, Kminek G, Meyer MA, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Grady MM, Hauber E, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Westall F, Zorzano MP. Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility (SRF). ASTROBIOLOGY 2022; 22:S217-S237. [PMID: 34904886 DOI: 10.1089/ast.2021.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. Executive Summary The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to enable receipt of the returned spacecraft, extraction and opening of the sealed sample container, extraction of the samples from the sample tubes, and a set of evaluations and analyses of the samples-all under strict protocols of biocontainment and contamination control. Some of the important constraints in the areas of cost and required performance have not yet been set by the necessary governmental sponsors, but it is reasonable to assume there will be a desire for the SRF to be as efficient and economical as is possible, while still enabling the objectives of MSR science to be achieved. Additionally, one of the main findings of MSR Sample Planning Group (MSPG, 2019a) states "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside a biocontained facility. Another benefit is the ability to enable similar or complementary analyses by multiple science investigators in different laboratories, which would confirm the reproducibility and accuracy of results. For these reasons, the MSPG concluded-and the MSR Science Planning Group Phase 2 (MSPG2) agrees-that the SRF should be designed to accommodate only those analytical activities inside biocontainment that could not reasonably be done in outside laboratories because such activities are time-sensitive, sterilization-sensitive, required by the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All activities within the SRF must be done while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. The SRF would need to provide a unique environment that consists of both Biosafety Level 4 (BSL-4) equivalent containment and a very high level of contamination control. The SRF would also need to accommodate the following activities: (1)Receipt of the returned spacecraft, presumably in a sealed shipping container (2)De-integration (i.e., disassembly) and assessment of the returned system, beginning with the spacecraft exterior and ending with accessing and isolating all Mars material (gas, dust, regolith, and rock) (3)Initial sample characterization, leading to development of a sample catalog sufficient to support sample allocation (see Tait et al., 2022) (4)Science investigations necessary to complete the SSAP (see Kminek et al., 2021) (5)Certain science investigations that are both time- and sterilization-sensitive (see Tosca et al., 2022; Velbel et al., 2022) (6)A managed transition to post-SRF activities that would include analysis of samples (either sterilized or not) outside biocontainment and the transfer of some or all samples to one or more uncontained curation facilities The MSPG2 has produced a compilation of potential design requirements for the SRF, based on the list of activities noted above, that can be used in cost and schedule planning. The text of this report is meant to serve as an overview and explanation of these proposed SRF Design Requirements that have been compiled by the MSPG2 SRF Requirements Focus Group (Supplement 1). Summary of Findings FINDING SRF-1: The quality of the science that can be achieved with the MSR samples will be negatively impacted if they are not protected from contamination and inappropriate environmental conditions. A significant amount of SRF infrastructure would therefore be necessary to maintain and monitor appropriate levels of cleanliness, contamination control, and environmental conditions. FINDING SRF-2: Although most MSR sample investigations would take place outside of the SRF, the SRF needs to include significant laboratory capabilities with advanced instruments and associated sample preparation systems to enable the MSR science objectives to be successfully achieved. FINDING SRF-3: Preliminary studies of different operational scenarios should be started as soon as possible to enable analysis of the trade-offs between the cost and size of the SRF and the amount of time needed to prepare the samples for allocation and analysis. FINDING SRF-4: The ability to add additional analytical capabilities within biocontainment should be preserved to address the contingency scenario in which unsterilized material is not cleared to be analyzed outside of biocontainment. If potential evidence of martian life were to be detected in the samples, for example, it would be a high priority to conduct further investigations related to any putative lifeforms, as well as to enable other sterilization-sensitive science investigations to be conducted in biocontainment.
Collapse
Affiliation(s)
- Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
9
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
10
|
Meyer MA, Kminek G, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agree CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Grady MM, Hauber E, Hutzler A, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Westall F, Zorzano MP. Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). ASTROBIOLOGY 2022; 22:S5-S26. [PMID: 34904888 DOI: 10.1089/ast.2021.0121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Mars Sample Return (MSR) Campaign must meet a series of scientific and technical achievements to be successful. While the respective engineering responsibilities to retrieve the samples have been formalized through a Memorandum of Understanding between ESA and NASA, the roles and responsibilities of the scientific elements have yet to be fully defined. In April 2020, ESA and NASA jointly chartered the MSR Science Planning Group 2 (MSPG2) to build upon previous planning efforts in defining 1) an end-to-end MSR Science Program and 2) needed functionalities and design requirements for an MSR Sample Receiving Facility (SRF). The challenges for the first samples brought from another planet include not only maintaining and providing samples in pristine condition for study, but also maintaining biological containment until the samples meet sample safety criteria for distribution outside of biocontainment. The MSPG2 produced six reports outlining 66 findings. Abbreviated versions of the five additional high-level MSPG2 summary findings are: Summary-1. A long-term NASA/ESA MSR Science Program, along with the necessary funding and human resources, will be required to accomplish the end-to-end scientific objectives of MSR. Summary-2. MSR curation would need to be done concurrently with Biosafety Level-4 containment. This would lead to complex first-of-a-kind curation implementations and require further technology development. Summary-3. Most aspects of MSR sample science could, and should, be performed on samples deemed safe in laboratories outside of the SRF. However, other aspects of MSR sample science are both time-sensitive and sterilization-sensitive and would need to be carried out in the SRF. Summary-4. To meet the unique science, curation, and planetary protection needs of MSR, substantial analytical and sample management capabilities would be required in an SRF. Summary-5. Because of the long lead-time for SRF design, construction, and certification, it is important that preparations begin immediately, even if there is delay in the return of samples.
Collapse
Affiliation(s)
- Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | | | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agree
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
11
|
Haltigin T, Hauber E, Kminek G, Meyer MA, Agee CB, Busemann H, Carrier BL, Glavin DP, Hays LE, Marty B, Pratt LM, Udry A, Zorzano MP, Beaty DW, Cavalazzi B, Cockell CS, Debaille V, Grady MM, Hutzler A, McCubbin FM, Regberg AB, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Usui T, Velbel MA, Wadhwa M, Westall F. Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. ASTROBIOLOGY 2022; 22:S27-S56. [PMID: 34904885 DOI: 10.1089/ast.2021.0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Mars Sample Return (MSR) Campaign represents one of the most ambitious scientific endeavors ever undertaken. Analyses of the martian samples would offer unique science benefits that cannot be attained through orbital or landed missions that rely only on remote sensing and in situ measurements, respectively. As currently designed, the MSR Campaign comprises a number of scientific, technical, and programmatic bodies and relationships, captured in a series of existing and anticipated documents. Ensuring that all required scientific activities are properly designed, managed, and executed would require significant planning and coordination. Because there are multiple scientific elements that would need to be executed to achieve MSR Campaign success, it is critical to ensure that the appropriate management, oversight, planning, and resources are made available to accomplish them. This could be achieved via a formal MSR Science Management Plan (SMP). A subset of the MSR Science Planning Group 2 (MSPG2)-termed the SMP Focus Group-was tasked to develop inputs for an MSR Campaign SMP. The scope is intended to cover the interface to the Mars 2020 mission, science elements in the MSR flight program, ground-based science infrastructure, MSR science opportunities, and the MSR sample and science data management. In this report, a comprehensive MSR Science Program is proposed that comprises specific science bodies and/or activities that could be implemented to address the science functionalities throughout the MSR Campaign. The proposed structure was designed by taking into consideration previous management review processes, a set of guiding principles, and key lessons learned from previous robotic exploration and sample return missions. Executive Summary The Mars Sample Return (MSR) Campaign represents one of the most ambitious scientific endeavors ever undertaken. Analyses of the martian samples would offer unique science benefits that cannot be attained through orbital or landed missions that rely only on remote sensing and in situ measurements, respectively. Ensuring that all required scientific activities are properly designed, managed, and executed would require significant planning and coordination. As currently designed, the MSR Campaign comprises a number of scientific, technical, and programmatic bodies and relationships, captured in a series of existing and anticipated documents. Because there are so many scientific elements that would need to be executed to achieve MSR Campaign success, it is critical to ensure that the appropriate management, oversight, planning, and resources are made available to accomplish them. To date, however, no dedicated budget lines within NASA and ESA have been made available for these purposes, and no formal MSR Science Management Plan (SMP) has yet been established. It is thus evident that: A joint ESA/NASA MSR Science Program, along with the necessary funding and resources, will be required to accomplish the end-to-end scientific objectives of MSR. To aid in planning, the MSR Science Program requires an overarching SMP to fully describe how it could be implemented to meet the MSR scientific objectives and maximize the overall science return. A subset of the MSR Science Planning Group 2 (MSPG2)-termed the SMP Focus Group-was tasked to develop inputs for the MSR Campaign SMP. The scope covers the interface to the Mars 2020 mission, science elements in the MSR flight program, ground-based science infrastructure, MSR science opportunities, and the MSR sample and science data management. Some of the required bodies and activities already exist; the remainder require definition. In this report, a comprehensive MSR Science Program is proposed, comprising specific science bodies and/or activities that could be implemented to address the science functionalities throughout the MSR Campaign. The proposed structure was designed by taking into consideration previous management review processes, a set of guiding principles, and key lessons learned from previous robotic exploration and sample return missions. While we acknowledge that the proposal is non-unique, that is, other implementations could meet the overall needs of the MSR Campaign, we have striven to optimize efficiencies and eliminate unnecessary overlap wherever possible to reduce the potential cost and complexity of the MSR Science Program. Many elements of the proposed Science Program are interdependent, as the decision to trigger certain bodies or activities depend on reaching key milestones throughout the MSR Campaign. Although the timing of certain elements may be flexible depending on the anticipated date of samples arriving on Earth, it is crucial that others are implemented as soon as is feasible. As a first step, formalizing the Science Program's management structure as soon as possible would ensure that impending time-sensitive trades are conducted, and the resulting decisions are made with adequate scientific input. Summary of Findings FINDING SMP-1: A joint science management structure and documented agreements among the MSR Partners are required to coordinate the MSR Science Program elements that are not currently defined in existing structures or documents. FINDING SMP-2: A long-term ESA/NASA MSR Science Program, along with the necessary funding and human resources, will be required to accomplish the end-to-end scientific objectives of MSR. FINDING SMP-3: The MSR Science Management Plan should be linked to, but not encompass, other required functionalities within the MSR Campaign. Input will be needed to produce formal plans for (at a minimum) curation, planetary protection, data management, and public engagement. FINDING SMP-4: The guiding principles proposed in the MSR Science Planning Group (MSPG) Framework document (2019c) remain appropriate and relevant and should be utilized in drafting the MSR Science Memorandum of Understanding (MOU) and Science Management Plan. FINDING SMP-5 (a): MSR scientific return would be maximized if participation in the MSR Science Program is not limited to scientists sponsored by existing MSR Partners; rather, opportunities should be provided to scientists from around the world. (b) All programmatic decision-making power (e.g., selection of competitive proposals) would still rest with the Partners. FINDING SMP-6: At the implementation level, the MSR Science Program should, wherever possible, leverage structures, programs, and lessons-learned from previous mission organization to benefit from their experiences to engender familiarity among both decision-makers and the science community. FINDING SMP-7: The MSR Science Program requires the establishment of scientific bodies to meet management, science operations, and public participation needs. These bodies require dedicated funding, addressing scientific functionalities that span the entirety of the MSR Campaign. FINDING SMP-8: Some elements of the MSR Science Program cannot be delayed in the event of an MSR Program schedule delay, as they are linked to key decisions or operations of the Mars 2020 mission.
Collapse
Affiliation(s)
| | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | | | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Maria-Paz Zorzano
- Centro de Astrobiologia, (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics & Astronomy, Edinburgh, UK
| | | | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| |
Collapse
|