1
|
Li Z, Yu Q, Cui X, Wang Y, Xu R, Lu R, Chen J, Zhou X, Zhang C, Li L, Xu W. Exosomes from young plasma stimulate the osteogenic differentiation and prevent osteoporosis via miR-142-5p. Bioact Mater 2025; 49:502-514. [PMID: 40206195 PMCID: PMC11979483 DOI: 10.1016/j.bioactmat.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Osteoporosis (OP) is a multifactorial metabolic bone disorder commonly observed in the elderly, particularly prevalent in postmenopausal women. However, many conventional anti-osteoporosis drugs have undesirable side effects, limiting their long-term use. Here, we demonstrated that exosomes derived from both young and old healthy human plasma, which exhibited similar morphology, could significantly enhance the proliferation and migration of mesenchymal stem cells (MSCs). Furthermore, treatment with these exosomes increased alkaline phosphatase (ALP) activity, enhanced the mineralization of MSCs, and decreased the number of osteoclasts in vitro. When intravenously injected into rats, these exosomes accumulated in bone tissue. In vivo experiments demonstrated that both types of exosomes had a beneficial effect on osteoporosis by facilitating bone formation and suppressing osteoclast differentiation in an ovariectomized (OVX)-induced osteoporotic rat model. Strikingly, exosomes derived from young healthy human plasma exhibited stronger anti-osteoporosis effect. The miRNA sequencing analysis showed that miR-142-5p expression was significantly higher in the exosomes from young healthy adult plasma compared to in exosomes from older controls. Importantly, miR-142-5p overexpression exerted similar pro-osteogenic effects to those of exosomes from young healthy human plasma, while miR-142-5p downregulation had the opposite effect on osteogenic differentiation of MSCs. The anti-osteoporosis effect of exosomes from young healthy adult plasma were reversed upon miR-142-5p inhibition. In addition, ZFPM2 was a potential target of miR-142-5p involved in osteoporosis. Therefore, our study reveals the potential anti-osteoporosis effects of plasma exosomes and their underlying mechanisms, thereby providing an effective therapeutic strategy for clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Qifeng Yu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Xiang Cui
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yi Wang
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Ruijun Xu
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaohan Zhou
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Wei Xu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| |
Collapse
|
2
|
Choudhury S, Das D, Roy S, Chowdhury AR. Piezoelectric Biomaterials for Use in Bone Tissue Engineering-A Narrative Review. J Biomed Mater Res B Appl Biomater 2025; 113:e35564. [PMID: 40096659 DOI: 10.1002/jbm.b.35564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/03/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
To examine natural bone's bioelectrical traits, notably its piezoelectricity, and to look into how these characteristics influence bone growth and repair. In the context of exploring the potential of piezoelectric biomaterials, such as biopolymers and bio-ceramics, towards orthopedic and bone regeneration applications, the research seeks to evaluate the significance of piezoelectricity-driven osteogenesis. The paper reviews recent research on bone's electrical and dielectric properties, surface polarization/electrical stimulation effects interacting with cell activity and the effectiveness of piezoelectric biomaterials to support tissues' regenerative process. The study includes a number of materials, such as collagen, polyvinylidene fluoride (PVDF) and barium titanate. The applications of piezoelectric bio-ceramics, piezoelectric organic polymers, and piezoelectric natural polymers are particularly highlighted. Piezoelectric biomaterials are being shown in recent studies to enhance cellular metabolism in vitro as well as promote the regeneration of tissues in vivo, especially when paired with electric field stimulation or interface polarization. Piezoelectric bio-ceramics like magnesium silicate and barium titanate, as well as biopolymers like collagen and PVDF, have shown possibilities for orthopedic applications. However, there are several challenges regarding the manufacturing of bio-ceramics of specific compositions having the desired properties. This review highlighted the potential of piezoelectric biomaterials in orthopedic applications with special emphasis on biopolymers and bioceramics. Therefore, these types of materials have huge potential for bone regeneration because they can mimic the piezoelectric properties of bone and allow better advances in tissue engineering or regenerative medicine. To date, little is known about their mechanism of action, and modifications are needed to improve efficacy for clinical uptake.
Collapse
Affiliation(s)
- Sandeep Choudhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Debolina Das
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Sandipan Roy
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| |
Collapse
|
3
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Wang WT, Tseng CC, Cho HC, Chiu KY, Weng LW, Chang YH, Chen RF, Lee SS, Wu YC. A newly designed Flexible Hydrated-Hardening Bone Graft (FHBG) promotes bone regeneration and in vivo calvarial repair. Biomed J 2025:100836. [PMID: 39988111 DOI: 10.1016/j.bj.2025.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Autologous bone remains the gold standard for surgical bone reconstruction but presents clinical challenges like donor site complications and operational difficulties. METHOD We investigate the osteogenic effects of a newly designed, ceramic and collagen-based, submicron-processed Flexible Hydrated-Hardening Bone Graft (FHBG), using both murine and human mesenchymal stem cells. We also compare the efficacy and safety of FHBG with a commercially available (CA) graft in New Zealand white rabbits with cranial bone defects. Rabbits were divided into three groups: no graft, CA, and FHBG, and evaluated using Micro-CT and histological analysis at three and six weeks post-surgery. Safety was assessed through blood samples. RESULTS In vitro, FHBG promoted osteogenesis and upregulated osteogenic-associated genes in mesenchymal stem cells. In vivo, FHBG significantly enhanced bone regeneration, showing approximately 25% and 30% more improvement than the control at three and six weeks post-surgery. FHBG also had about half the residual content compared to the CA group. Blood analysis showed no hepatotoxicity or nephrotoxicity associated with the graft. CONCLUSION FHBG significantly promotes bone regeneration both in vitro and in vivo. Additionally, FHBG has been demonstrated to be safe, with fewer residuals remaining in the body compared to currently in-use clinical bone grafts. This study validates the ability of the newly designed FHBG to facilitate osteogenesis in vitro and demonstrates its efficacy and safety in new bone formation in vivo. The lower residual material further suggests a reduced long-term impact and associated risk with the graft.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan.
| | - Chun-Chieh Tseng
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 821011, Taiwan.
| | - Huan-Chieh Cho
- Consortium of Integrative Biomedical Science Key Technology, National Taiwan University, Taipei 106319, Taiwan.
| | - Kuan-Yu Chiu
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 821011, Taiwan.
| | - Li-Wen Weng
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 821011, Taiwan.
| | - Yen-Hao Chang
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 821011, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan; Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
| |
Collapse
|
5
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Marom H, Khan MA, Darvish N, Tornetta III P, Khoury A, Weil YA, Skelley NWM, Allison DC, Meiron S, Ehrmann Barr T. β-Caryophyllene and Statins in Bone Fracture Healing - A Narrative Review. Orthop Res Rev 2025; 17:31-42. [PMID: 39872403 PMCID: PMC11771162 DOI: 10.2147/orr.s506427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Bone fractures are a leading cause of morbidity and healthcare expenditure globally. The complex healing process involves inflammation, cartilage formation, mineralization, and bone remodeling. Current treatments like immobilization, surgery, and bone grafting, though effective, pose significant challenges, such as prolonged recovery and high costs. Emerging therapies such as biological agents, pharmacological treatments, and physical stimulation techniques are also associated with high costs, side effects, and practical applicability limitations. There is a critical need for alternative therapies that are cost-effective, safe, and easy to use. Recent studies suggest the potential of β-caryophyllene (BCP) and statins in promoting bone healing. BCP, a naturally occurring anti-inflammatory and antioxidant compound found in essential oils, enhances osteoblast activity and inhibits osteoclastogenesis. Statins, known for their cholesterol-lowering effects, also promote bone formation and reduce bone resorption through multiple biochemical pathways. Both BCP and statins have shown promising results in preclinical studies, enhancing bone density and promoting fracture healing. This review explores the individual and potential synergistic effects of BCP and statins on bone fracture healing. It highlights the complementary mechanisms of these agents: BCP's anti-inflammatory and osteogenic properties and statins' ability to inhibit osteoclast activity and promote angiogenesis. Combining BCP and statins could offer a multifaceted approach to enhance fracture healing, reduce complications, and improve patient outcomes. While individual effects are supported preclinically, further studies investigating synergies, formulations, and clinical translation are needed to develop this promising novel therapeutic approach for improving fracture repair outcomes.
Collapse
Affiliation(s)
| | | | - Nissim Darvish
- Corporate Office, OrthoTreat Ltd, Tel Aviv-Jaffa, Israel
| | - Paul Tornetta III
- Department of Orthopaedic Surgery and Orthopaedic Trauma, Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Amal Khoury
- Division of Orthopaedic Surgery, Orthopaedic, and Reconstructive Trauma Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoram A Weil
- Department of Orthopaedics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | - Daniel C Allison
- Department of Orthopaedic Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sahar Meiron
- Corporate Office, OrthoTreat Ltd, Tel Aviv-Jaffa, Israel
| | | |
Collapse
|
7
|
Gito DA, Akbarinejad A, Dixon A, Loho T, Nieuwoudt M, Chen Q, Domigan LJ, Malmström J. Self-Assembled Piezoelectric Films from Aligned Lysozyme Protein Fibrils. Biomacromolecules 2025; 26:514-527. [PMID: 39746020 PMCID: PMC11733944 DOI: 10.1021/acs.biomac.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Piezoelectric organic polymers are promising alternatives to their inorganic counterparts due to their mechanical flexibility, making them suitable for flexible and wearable piezoelectric devices. Biological polymers such as proteins have been reported to possess piezoelectricity, while offering additional benefits, such as biocompatibility and biodegradability. However, questions remain regarding protein piezoelectricity, such as the impact of the protein secondary structure. This study examines the piezoelectric properties of lysozyme amyloid fibril films, plasticized by polyethylene glycol (PEG). The films demonstrated a measurable d33 coefficient of 1.4 ± 0.1 pCN-1, for the optimized PEG concentration, confirming piezoelectricity. The PEG was found to hydrogen-bond with the fibrils, likely impacting the piezoelectric response of the film. Polarization imaging revealed long-range alignment of the amyloid fibrils in a circumferential arrangement. These results demonstrate the potential of using amyloid fibrils, which can be formed from various proteins, to create bulk self-assembled piezoelectric materials.
Collapse
Affiliation(s)
- Donn Adam
D. Gito
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Alireza Akbarinejad
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Alexander Dixon
- Auckland
Bioengineering Institute, The University
of Auckland, Auckland 1010, New Zealand
| | - Thomas Loho
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
| | - Michel Nieuwoudt
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Qun Chen
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Laura J. Domigan
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jenny Malmström
- Department
of Chemical and Materials Engineering, The
University of Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
8
|
Liu M, Henick B, Cheng K. Translational inhalable extracellular vesicle-based mRNA therapy for the treatment of lung cancer. Clin Transl Med 2025; 15:e70186. [PMID: 39801009 PMCID: PMC11726640 DOI: 10.1002/ctm2.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Affiliation(s)
- Mengrui Liu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| | - Ke Cheng
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
9
|
Khodabandeh A, Yousefi AA, Jafarzadeh-Holagh S, Vasheghani-Farahani E. Fabrication of 3D microfibrous composite polycaprolactone/hydroxyapatite scaffolds loaded with piezoelectric poly (lactic acid) nanofibers by sequential near-field and conventional electrospinning for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 166:214053. [PMID: 39342781 DOI: 10.1016/j.bioadv.2024.214053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Near-field electrospinning (NFES) has recently gained considerable interest in fabricating tissue engineering scaffolds. This technique combines the advantages of both 3D printing and electrospinning. It allows for the production of fibers with smaller resolution and the ability to make regular structures with suitable pores. In this study, a microfibrous composite scaffold of polycaprolactone (PCL)/hydroxyapatite (HA) was prepared by NFES in the first step. The microfibrous scaffold had a fiber spacing of 414.674 ± 24.9 μm with an average fiber diameter of 94.695 ± 16.149 μm. However, due to the large fiber spacing, the surface area was insufficient for cell adhesion. Therefore, the hybrid scaffold was prepared by adding aligned and random electrospun poly (L-lactic acid) (PLLA) nanofibers to the microfibrous scaffold. Cellular studies showed that cell adhesion to the hybrid scaffold increased by 334 % compared to the microfibrous scaffold. These nanofibers also exhibited piezoelectric properties, which helped stimulate bone regeneration. Aligned nanofibers in the hybrid scaffold enhanced alkaline phosphatase activity and the intensity of alizarin red staining 1.5 and 1.6 times, respectively, compared to the microfibrous scaffold. Furthermore, the elastic modulus and ultimate tensile strength increased by 268 % and 130 %, respectively, by adding aligned nanofibers to the microfibrous scaffold. Therefore, the hybrid microfibrous composite scaffold of PCL/HA containing aligned electrospun PLLA nanofibers with improved properties showed the potential for bone regeneration.
Collapse
Affiliation(s)
- Alireza Khodabandeh
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, 14115-336 Tehran, Iran
| | - Ali Akbar Yousefi
- Department of Plastics Engineering, Faculty of Polymer Processing, Polymer and Petrochemical Institute, 14965-115 Tehran, Iran
| | - Samira Jafarzadeh-Holagh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143 Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, 14115-336 Tehran, Iran; Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143 Tehran, Iran.
| |
Collapse
|
10
|
Zeng K, Lin Y, Liu S, Wang Z, Guo L. Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects. Mater Today Bio 2024; 29:101288. [PMID: 40018432 PMCID: PMC11866170 DOI: 10.1016/j.mtbio.2024.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.
Collapse
Affiliation(s)
- Kaichen Zeng
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifan Lin
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shirong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyan Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
12
|
Wei Y, Liang Y, Qi K, Gu Z, Yan B, Xie H. Exploring the application of piezoelectric ceramics in bone regeneration. J Biomater Appl 2024; 39:409-420. [PMID: 39152927 DOI: 10.1177/08853282241274528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Yige Wei
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kailong Qi
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Mokhtari F, Nam HY, Ruhparwar A, Raad R, Razal JM, Varley RJ, Wang CH, Foroughi J. Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices. J Mater Chem B 2024; 12:9727-9739. [PMID: 39224031 DOI: 10.1039/d4tb01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-performance biocompatible composite materials are gaining attention for their potential in various fields such as neural tissue scaffolds, bio-implantable devices, energy harvesting, and biomechanical sensors. However, these devices currently face limitations in miniaturization, finite battery lifetimes, fabrication complexity, and rigidity. Hence, there is an urgent need for smart and self-powering soft devices that are easily deployable under physiological conditions. Herein, we present a straightforward and efficient fabrication technique for creating flexible/stretchable fiber-based piezoelectric structures using a hybrid nanocomposite of polyvinylidene fluoride (PVDF), reduced graphene oxide (rGO), and barium-titanium oxide (BT). These nanocomposite fibers are capable of converting biomechanical stimuli into electrical signals across various structural designs (knit, braid, woven, and coil). It was found that a stretchable configuration with higher output voltage (4 V) and a power density (87 μW cm-3) was obtained using nanocomposite coiled fibers or knitted fibers, which are ideal candidates for real-time monitoring of physiological signals. These structures are being proposed for practical transition to the development of the next generation of fiber-based biomedical devices. The cytotoxicity and cytocompatibility of nanocomposite fibers were tested on human mesenchymal stromal cells. The obtained results suggest that the developed fibers can be utilized for smart scaffolds and bio-implantable devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Arjang Ruhparwar
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
| | - Raad Raad
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Javad Foroughi
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Gong Y, Zhang K, Lei IM, Wang Y, Zhong J. Advances in Piezoelectret Materials-Based Bidirectional Haptic Communication Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405308. [PMID: 38895922 DOI: 10.1002/adma.202405308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Bidirectional haptic communication devices accelerate the revolution of virtual/augmented reality and flexible/wearable electronics. As an emerging kind of flexible piezoelectric materials, piezoelectret materials can effortlessly convert mechanical force into electrical signals and respond to electrical fields in a deformation manner, exhibiting enormous potential in the construction of bidirectional haptic communication devices. Existing reviews on piezoelectret materials primarily focus on flexible energy harvesters and sensors, and the recent development of piezoelectret-based bidirectional haptic communication devices has not been comprehensively reviewed. Herein, a comprehensive overview of the materials construction, along with the recent advances in bidirectional haptic communication devices, is provided. First, the development timeline, key characteristics, and various fabrication methods of piezoelectret materials are introduced. Subsequently, following the underlying mechanisms of bidirectional electromechanical signal conversion of piezoelectret, strategies to improve the d33 coefficients of materials are proposed. The principles of haptic perception and feedback are also highlighted, and representative works and progress in this area are summarized. Finally, the challenges and opportunities associated with improving the overall practicability of piezoelectret materials-based bidirectional haptic communication devices are discussed.
Collapse
Affiliation(s)
- Yanting Gong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Iek Man Lei
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
16
|
Jiang G, Dai M, Zhang G, Gao L. Piezoelectric sensing method for segmental joint contact stress during shield tunnel construction. UNDERGROUND SPACE 2024; 17:82-99. [DOI: 10.1016/j.undsp.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Kong X, Zheng T, Wang Z, Zhou T, Shi J, Wang Y, Zhang B. Remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues for bone repair. Theranostics 2024; 14:4438-4461. [PMID: 39113795 PMCID: PMC11303086 DOI: 10.7150/thno.97610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
The high incidence of bone defect-related diseases caused by trauma, infection, and tumor resection has greatly stimulated research in the field of bone regeneration. Generally, bone healing is a long and complicated process wherein manipulating the biological activity of interventional scaffolds to support long-term bone regeneration is significant for treating bone-related diseases. It has been reported that some physical cues can act as growth factor substitutes to promote osteogenesis through continuous activation of endogenous signaling pathways. This review focuses on the latest progress in bone repair by remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues (heat, electricity, and magnetism). As an alternative method to treat bone defects, physical cues show many advantages, including effectiveness, noninvasiveness, and remote manipulation. First, we introduce the impact of different physical cues on bone repair and potential internal regulatory mechanisms. Subsequently, biomaterials that mediate various physical cues in bone repair and their respective characteristics are summarized. Additionally, challenges are discussed, aiming to provide new insights and suggestions for developing intelligent biomaterials to treat bone defects and promote clinical translation.
Collapse
Affiliation(s)
- Xueping Kong
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | | | | | | | | | - Ying Wang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | - Ben Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| |
Collapse
|
18
|
Li T, Deng S, Liu H, Chen J. Insights into Strain Engineering: From Ferroelectrics to Related Functional Materials and Beyond. Chem Rev 2024; 124:7045-7105. [PMID: 38754042 DOI: 10.1021/acs.chemrev.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Ferroelectrics have become indispensable components in various application fields, including information processing, energy harvesting, and electromechanical conversion, owing to their unique ability to exhibit electrically or mechanically switchable polarization. The distinct polar noncentrosymmetric lattices of ferroelectrics make them highly responsive to specific crystal structures. Even slight changes in the lattice can alter the polarization configuration and response to external fields. In this regard, strain engineering has emerged as a prevalent regulation approach that not only offers a versatile platform for structural and performance optimization within ferroelectrics but also unlocks boundless potential in various functional materials. In this review, we systematically summarize the breakthroughs in ferroelectric-based functional materials achieved through strain engineering and progress in method development. We cover research activities ranging from fundamental attributes to wide-ranging applications and novel functionalities ranging from electromechanical transformation in sensors and actuators to tunable dielectric materials and information technologies, such as transistors and nonvolatile memories. Building upon these achievements, we also explore the endeavors to uncover the unprecedented properties through strain engineering in related chemical functionalities, such as ferromagnetism, multiferroicity, and photoelectricity. Finally, through discussions on the prospects and challenges associated with strain engineering in the materials, this review aims to stimulate the development of new methods for strain regulation and performance boosting in functional materials, transcending the boundaries of ferroelectrics.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, China
| |
Collapse
|
19
|
Ardani IGAW, Hariati IVD, Nugraha AP, Narmada IB, Syaifudin A, Perkasa IBA, Gunung GP, Deshmukh S, Hassan R. Comparison of biomechanical performance of titanium and polyaryletheretherketone miniscrews at different insertion angles: A finite element analysis. J Orthod Sci 2024; 13:13. [PMID: 38784072 PMCID: PMC11114449 DOI: 10.4103/jos.jos_102_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Only miniscrews [temporary anchoring devices, (TADs)] can provide absolute anchorage during orthodontic treatment. Titanium (Ti) is a fundamental material used in the production of miniscrews, but it has many disadvantages. Polyaryletheretherketone (PEEK) may have various benefits in the production of miniscrews. Finite element analysis (FEA) is a valid and reliable method for calculating stress, strain, and loading forces on complex structures and can be more time- and cost-efficient. OBJECTIVE To investigate the biomechanical performance of Ti and PEEK as miniscrew biomaterials employing FEA. MATERIALS AND METHODS This study is a 3-D (3D) simulation with FEA. First, 3D miniscrew modeling is done using Ti base material and PEEK (1.4 mm × 6 mm size), as well as 3D inter-radicular space bone modeling. The simulation was performed by modeling the insertion angles (30°, 60°, and 90°) and applying a 200-gram loading force. The biomechanical performance of the miniscrew was then determined using FEA. RESULTS As the angle of insertion increases, the tension on the bone decreases, the stress on the TADs increases, and the bone deformation decreases. Compared to TADs made of Ti and PEEK, TADs made of PEEK alone cause more bone stress than TADs made of Ti. The distortion in the maxilla is observed to be larger than in the mandibular. CONCLUSION PEEK has greater stress on the bones than Ti and may be prospected as an alternative biomaterial for TAD fabrication, as documented in the FEA.
Collapse
Affiliation(s)
- I Gusti Aju Wahju Ardani
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Achmad Syaifudin
- Department of Biomedical Engineering, Faculty of Intelligent Electrical and Informatics Technology, Institute of Technology Sepuluh Nopember, Surabaya, East Java, Indonesia
| | - Ida Bagus Agastya Perkasa
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Guruh Putra Gunung
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Shailesh Deshmukh
- Orthodontic Department, Faculty of Dentistry, Bharati Vidyapeeth University Dental College and Hospital, India - Adjunct Professor Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Rozita Hassan
- Orthodontic Unit, Faculty of Dentistry, Universiti Sains Malaysia, Malaysia
| |
Collapse
|
20
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
21
|
Wu L, Gao H, Han Q, Guan W, Sun S, Zheng T, Liu Y, Wang X, Huang R, Li G. Piezoelectric materials for neuroregeneration: a review. Biomater Sci 2023; 11:7296-7310. [PMID: 37812084 DOI: 10.1039/d3bm01111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.
Collapse
Affiliation(s)
- Linliang Wu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- The People's Hospital of Rugao, Affiliated Hospital of Nantong University, 226599, Nantong, P. R. China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Qi Han
- Department of Science and Technology, Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Tiantian Zheng
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaolu Wang
- Suzhou SIMATECH Co. Ltd, 215168, Suzhou, P.R. China
| | - Ran Huang
- Zhejiang Cathaya International Co., Ltd, 310006, Hangzhou, P.R. China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
23
|
Alshammari A, Alabdah F, Wang W, Cooper G. Virtual Design of 3D-Printed Bone Tissue Engineered Scaffold Shape Using Mechanobiological Modeling: Relationship of Scaffold Pore Architecture to Bone Tissue Formation. Polymers (Basel) 2023; 15:3918. [PMID: 37835968 PMCID: PMC10575293 DOI: 10.3390/polym15193918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Large bone defects are clinically challenging, with up to 15% of these requiring surgical intervention due to non-union. Bone grafts (autographs or allografts) can be used but they have many limitations, meaning that polymer-based bone tissue engineered scaffolds (tissue engineering) are a more promising solution. Clinical translation of scaffolds is still limited but this could be improved by exploring the whole design space using virtual tools such as mechanobiological modeling. In tissue engineering, a significant research effort has been expended on materials and manufacturing but relatively little has been focused on shape. Most scaffolds use regular pore architecture throughout, leaving custom or irregular pore architecture designs unexplored. The aim of this paper is to introduce a virtual design environment for scaffold development and to illustrate its potential by exploring the relationship of pore architecture to bone tissue formation. A virtual design framework has been created utilizing a mechanical stress finite element (FE) model coupled with a cell behavior agent-based model to investigate the mechanobiological relationships of scaffold shape and bone tissue formation. A case study showed that modifying pore architecture from regular to irregular enabled between 17 and 33% more bone formation within the 4-16-week time periods analyzed. This work shows that shape, specifically pore architecture, is as important as other design parameters such as material and manufacturing for improving the function of bone tissue scaffold implants. It is recommended that future research be conducted to both optimize irregular pore architectures and to explore the potential extension of the concept of shape modification beyond mechanical stress to look at other factors present in the body.
Collapse
Affiliation(s)
- Adel Alshammari
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Fahad Alabdah
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Weiguang Wang
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| | - Glen Cooper
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| |
Collapse
|
24
|
Kontogianni GI, Loukelis K, Bonatti AF, Batoni E, De Maria C, Naseem R, Dalgarno K, Vozzi G, MacManus DB, Mondal S, Dunne N, Vitale-Brovarone C, Chatzinikolaidou M. Effect of Uniaxial Compression Frequency on Osteogenic Cell Responses in Dynamic 3D Cultures. Bioengineering (Basel) 2023; 10:bioengineering10050532. [PMID: 37237602 DOI: 10.3390/bioengineering10050532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.%) polymeric blend scaffolds. The constructs were subjected every day to cyclic uniaxial compression for 40 min at a displacement of 400 μm, using three frequency values, 0.5, 1, and 1.5 Hz, for up to 21 days, and their osteogenic response was compared to that of static cultures. Finite element simulation was performed to validate the scaffold design and the loading direction, and to assure that cells inside the scaffolds would be subjected to significant levels of strain during stimulation. None of the applied loading conditions negatively affected the cell viability. The alkaline phosphatase activity data indicated significantly higher values at all dynamic conditions compared to the static ones at day 7, with the highest response being observed at 0.5 Hz. Collagen and calcium production were significantly increased compared to static controls. These results indicate that all of the examined frequencies substantially promoted the osteogenic capacity.
Collapse
Affiliation(s)
| | - Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Amedeo Franco Bonatti
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
| | - Elisa Batoni
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
| | - Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
| | - David B MacManus
- School of Mechanical & Manufacturing Engineering, Dublin City University, D09 W6F4 Dublin, Ireland
| | - Subrata Mondal
- School of Mechanical & Manufacturing Engineering, Dublin City University, D09 W6F4 Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical & Manufacturing Engineering, Dublin City University, D09 W6F4 Dublin, Ireland
| | | | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas (FORTH)-IESL, 70013 Heraklion, Greece
| |
Collapse
|
25
|
Yan H, Wang C, Zhang Q, Yu P, Xiao Y, Wang C, Zhang P, Hou G. Conductive Polyaniline Particles Regulating In Vitro Hydrolytic Degradation and Erosion of Hydroxyapatite/Poly(lactide- co-glycolide) Porous Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1541-1557. [PMID: 36758235 DOI: 10.1021/acsbiomaterials.2c01253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In addition to biocompatibility and bioactivity, scaffolds with superior bone tissue regenerative capacity should possess excellent functionality (e.g., electroactivity and conductivity) and biodegradability matching with the rate of bone reconstruction. However, current conductive scaffolds display a reduced biodegradability rate and weakened biocompatibility. In this study, injectable conductive porous scaffolds were fabricated, incorporating camphor sulfonic acid-doped polyaniline (PANI) into hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) scaffolds, using solvent-casting/particulate-leaching methodology. These scaffolds demonstrated excellent electroactivity, conductivity, hydrophilicity, thermodynamic properties, antibacterial properties, and biocompatibility. Their degradation behavior was explored by regulating the PANI content. The results demonstrated that adding an appropriate content of PANI would increase the pore size, porosity, and water absorption of the conductive scaffold and promote the formation of filamentous fiber byproducts with acidic hydrolysates, which accelerated the degradation rate of the scaffold. Owing to π-π stacking and hydrogen bonding, the conductive scaffold with 10 wt % PANI efficiently retarded the decrease in the thermal and mechanical properties of the scaffolds during a 16 week degradation. Thus, better regulation of degradation behavior and correlation would allow conductive porous scaffolds, such as bone implants, to achieve better bone ingrowth and restoration.
Collapse
Affiliation(s)
- Huanhuan Yan
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Chen Wang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Qingxia Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Pengfei Yu
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Yuwei Xiao
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Chunhua Wang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Guige Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
| |
Collapse
|
26
|
Intravaia JT, Graham T, Kim HS, Nanda HS, Kumbar SG, Nukavarapu SP. Smart Orthopedic Biomaterials and Implants. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100439. [PMID: 36642994 PMCID: PMC9835562 DOI: 10.1016/j.cobme.2022.100439] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Musculoskeletal injuries including bone defects continue to present a significant challenge in orthopedic surgery due to suboptimal healing. Bone reconstruction strategies focused on the use of biological grafts and bone graft substitutes in the form of biomaterials-based 3D structures in fracture repair. Recent advances in biomaterials science and engineering have resulted in the creation of intricate 3D bone-mimicking structures that are mechanically stable, biodegradable, and bioactive to support bone regeneration. Current efforts are focused on improving the biomaterial and implant physicochemical properties to promote interactions with the host tissue and osteogenesis. The "smart" biomaterials and their 3D structures are designed to actively interact with stem/progenitor cells and the extracellular matrix (ECM) to influence the local environment towards osteogenesis and de novo tissue formation. This article will summarize such smart biomaterials and the methodologies to apply either internal or external stimuli to control the tissue healing microenvironment. A particular emphasis is also made on the use of smart biomaterials and strategies to create functional bioactive implants for bone defect repair and regeneration.
Collapse
Affiliation(s)
| | - Trevon Graham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hyun S. Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Himansu S. Nanda
- Terasaki Institute, University of California, Los Angeles, CA, USA
- Mechanical Engineering, IIITDM, Jabalpur, MP, India
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
27
|
Nedelcu L, Ferreira JMF, Popa AC, Amarande L, Nan B, Bălescu LM, Geambașu CD, Cioangher MC, Leonat L, Grigoroscuță M, Cristea D, Stroescu H, Ciocoiu RC, Stan GE. Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:901. [PMID: 36769908 PMCID: PMC9917895 DOI: 10.3390/ma16030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.
Collapse
Affiliation(s)
- Liviu Nedelcu
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Bo Nan
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | - Lucia Leonat
- National Institute of Materials Physics, 077125 Magurele, Romania
| | | | - Daniel Cristea
- Department of Materials Science, Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500068 Brasov, Romania
| | - Hermine Stroescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| |
Collapse
|
28
|
Chen WC, Huang BY, Huang SM, Liu SM, Chang KC, Ko CL, Lin CL. In vitro evaluation of electrospun polyvinylidene fluoride hybrid nanoparticles as direct piezoelectric membranes for guided bone regeneration. BIOMATERIALS ADVANCES 2022; 144:213228. [PMID: 36481520 DOI: 10.1016/j.bioadv.2022.213228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
A polyvinylidene fluoride (PVDF) piezoelectric membrane containing carbon nanotubes (CNTs) and graphene oxide (GO) additives was prepared, with special emphasis on the piezoelectric activity of the aligned fibers. Fibroblast viability on membranes was measured to study cytotoxicity. Osteoprogenitor D1 cells were cultured, and mineralization of piezoelectric composite membranes was assessed by ultrasound stimulation. Results showed that the electrospun microstructures were anisotropically aligned fibers. As the GO content increased to 1.0 wt% (0.2 wt% interval), the β phase in PVDF slightly increased but showed the opposite trend with the increase in CNT. Excessive addition of GO and CNT hindered the growth of the β phase in PVDF. The direct piezoelectric activity and mechanical properties showed the same trend as the β phase in PVDF. Moreover, GO/PVDF with the same nanoparticle content showed better performance than CNT/PVDF composites. In this study, a comparison of the generated piezoelectric specific voltage (unit: 10-3 Vg-1 cm-2, linear stretch, g33) with control PVDF only (0.55 ± 0.16) revealed that the two composites containing 0.8 wt% GO- and 0.2 wt% CNT- with 15 wt% PVDF exhibited excellent piezoelectric voltages, which were 3.37 ± 1.05 and 1.45 ± 0.07 (10-3 Vg-1 cm-2), respectively. In vitro cultures of these two groups in contact with D1 cells showed significantly higher alkaline phosphatase secretion than the PVDF only group within 1-10 days of cell culture. Further application of ultrasound stimulation showed that the piezoelectric membrane differentiated D1 cells earlier than without ultrasound and induced higher proliferation and mineralization. This developing piezoelectric effect is expected to generate voltage through activities to enhance microcurrent stimulation in vivo.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Bo-Yuan Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Kai-Chi Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chia-Ling Ko
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
29
|
Caliogna L, Bina V, Brancato AM, Gastaldi G, Annunziata S, Mosconi M, Grassi FA, Benazzo F, Pasta G. The Role of PEMFs on Bone Healing: An In Vitro Study. Int J Mol Sci 2022; 23:14298. [PMID: 36430775 PMCID: PMC9693979 DOI: 10.3390/ijms232214298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.
Collapse
Affiliation(s)
- Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Benazzo
- Sezione di Chirurgia Protesica ad Indirizzo Robotico-Unità di Traumatologia dello Sport, U.O. Ortopedia e Traumatologia Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|