1
|
Tsukamoto Y, Okajima T. O-GlcNAc glycans in the mammalian extracellular environment. Carbohydr Res 2025; 549:109378. [PMID: 39813972 DOI: 10.1016/j.carres.2025.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins. In mammals, O-GlcNAc glycans can be extended to oligosaccharide structures similar to other types of EGF domain-specific O-glycans. The in vivo importance of O-GlcNAc glycans in mammals has been demonstrated in a human congenital disease caused by EOGT mutations and is extensively supported by genetic deletion in mice. This article reviews the findings on the structure and biochemical mechanism of EOGT-catalyzed O-GlcNAc biosynthesis, modified proteins, and in vivo functions elucidated by recent research in mammals.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
4
|
Leng Z, Sun D, Huang Z, Tadmori I, Chiang N, Kethidi N, Sabra A, Kushida Y, Fu YS, Dezawa M, He X, Young W. Quantitative Analysis of SSEA3+ Cells from Human Umbilical Cord after Magnetic Sorting. Cell Transplant 2019; 28:907-923. [PMID: 30997834 PMCID: PMC6719495 DOI: 10.1177/0963689719844260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a population of pluripotent stage-specific embryonic antigen 3 (SSEA3)+ mesenchymal stem cells first described by Mari Dezawa in 2010. Although some investigators have reported SSEA3+ mesenchymal cells in umbilical cord tissues, none have quantitatively compared SSEA3+ cells isolated from Wharton’s jelly (WJ) and the cord lining (CL) of human umbilical cords (HUCs). We separated WJ and the CL from HUCs, cultured mesenchymal stromal cells (MSCs) isolated from these two tissues with collagenase, and quantified the percentage of SSEA3+ cells over three passages. The first passage had 5.0% ± 4.3% and 5.3% ± 5.1% SSEA3+ cells from WJ and the CL, respectively, but the percentage of SSEA3+ cells decreased significantly (P < 0.05) between P0 and P2 in the CL group and between P0 and P1 in the WJ group. Magnetic-activated cell sorting (MACS) markedly enriched SSEA3+ cells to 91.4% ± 3.2%. Upon culture of the sorted population, we found that the SSEA3+ percentage ranged from 62.5% to 76.0% in P2–P5 and then declined to 42.0%–54.7% between P6 and P9. At P10, the cultures contained 37.4% SSEA3+ cells. After P10, we resorted the cells and achieved 89.4% SSEA3+ cells in culture. The procedure for MACS-based enrichment of SSEA3+ cells, followed by expansion in culture and a re-enrichment step, allows the isolation of many millions of SSEA3+ cells in relatively pure culture. When cultured, the sorted SSEA3+ cells differentiated into embryoid spheres and survived 4 weeks after transplant into a contused Sprague-Dawley rat spinal cord. The transplanted SSEA3+ cells migrated into the injury area from four injection points around the contusion site and did not produce any tumors. The umbilical cord is an excellent source of fetal Muse cells, and our method allows the practical and efficient isolation and expansion of relatively pure populations of SSEA3+ Muse cells that can be matched by human leukocyte antigen for transplantation in human trials.
Collapse
Affiliation(s)
- Zikuan Leng
- 1 Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Dongming Sun
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Zihao Huang
- 3 Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei
| | - Iman Tadmori
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Ning Chiang
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Nikhit Kethidi
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Ahmed Sabra
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Yoshihiro Kushida
- 4 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu-Show Fu
- 3 Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei
| | - Mari Dezawa
- 4 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xijing He
- 1 Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wise Young
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Ogawa M, Okajima T. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol 2019; 56:72-77. [PMID: 30669087 DOI: 10.1016/j.sbi.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Extracellular O-GlcNAc is a unique modification restricted to the epidermal growth factor (EGF) domain-containing glycoproteins. This O-GlcNAcylation is catalyzed by the EGF-domain specific O-GlcNAc transferase (EOGT), which is localized in the lumen of endoplasmic reticulum. In humans, EOGT is one of the causative genes of a congenital disease, Adams-Oliver syndrome. EOGT is highly expressed in endothelial cells and regulates vascular development and integrity by potentiating Delta-like ligand-mediated Notch signaling. In Drosophila, Eogt modifies Dumpy, an apical extracellular matrix glycoprotein, and affects Dumpy-dependent cell-matrix interaction. In this review, we summarize the current findings of the structure and functions of extracellular O-GlcNAc in animals.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Plusquin M, Chadeau-Hyam M, Ghantous A, Alfano R, Bustamante M, Chatzi L, Cuenin C, Gulliver J, Herceg Z, Kogevinas M, Nawrot TS, Pizzi C, Porta D, Relton CL, Richiardi L, Robinson O, Sunyer J, Vermeulen R, Vriens A, Vrijheid M, Henderson J, Vineis P. DNA Methylome Marks of Exposure to Particulate Matter at Three Time Points in Early Life. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5427-5437. [PMID: 29597345 DOI: 10.1021/acs.est.7b06447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Maternal exposure to airborne particulate matter (PM) has been associated with restricted fetal growth and reduced birthweight. Here, we performed methylome-wide analyses of cord and children's blood DNA in relation to residential exposure to PM smaller than 10 μm (PM10). This study included participants of the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC, cord blood, n = 780; blood at age 7, n = 757 and age 15-17, n = 850) and the EXPOsOMICS birth cohort consortium including cord blood from ENVIR ONAGE ( n = 197), INMA ( n = 84), Piccolipiù ( n = 99) and Rhea ( n = 75). We could not identify significant CpG sites, by meta-analyzing associations between maternal PM10 exposure during pregnancy and DNA methylation in cord blood, nor by studying DNA methylation and concordant annual exposure at 7 and 15-17 years. The CpG cg21785536 was inversely associated with PM10 exposure using a longitudinal model integrating the three studied age groups (-1.2% per 10 μg/m3; raw p-value = 3.82 × 10-8). Pathway analyses on the corresponding genes of the 100 strongest associated CpG sites of the longitudinal model revealed enriched pathways relating to the GABAergic synapse, p53 signaling and NOTCH1. We provided evidence that residential PM10 exposure in early life affects methylation of the CpG cg21785536 located on the EGF Domain Specific O-Linked N-Acetylglucosamine Transferase gene.
Collapse
Affiliation(s)
- Michelle Plusquin
- Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
- Department of Epidemiology and Biostatistics, The School of Public Health , Imperial College London , London , United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, The School of Public Health , Imperial College London , London , United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology , Utrecht University , Utrecht , The Netherlands
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC) , 150 Cours Albert-Thomas , 69008 Lyon , France
| | - Rossella Alfano
- Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
- Department of Epidemiology and Biostatistics, The School of Public Health , Imperial College London , London , United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
| | - Mariona Bustamante
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Madrid , Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL) , Barcelona , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Catalonia , Spain
| | - Leda Chatzi
- Department of Preventive Medicine , University of Southern California , Los Angeles , California 90007 , United States
- Department of Social Medicine , University of Crete , Heraklion, Crete , Greece
| | - Cyrille Cuenin
- International Agency for Research on Cancer (IARC) , 150 Cours Albert-Thomas , 69008 Lyon , France
| | - John Gulliver
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC) , 150 Cours Albert-Thomas , 69008 Lyon , France
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Madrid , Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL) , Barcelona , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Catalonia , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - Tim S Nawrot
- Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
- Environment & Health Unit Leuven University , Leuven , Belgium
| | - Costanza Pizzi
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences , University of Turin and CPO-Piemonte , Torino , Italy
| | - Daniela Porta
- Department of Epidemiology of the Lazio Regional Health Service , Rome , Italy
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , U.K
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences , University of Turin and CPO-Piemonte , Torino , Italy
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health , Imperial College London , London , United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
| | - Jordi Sunyer
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Madrid , Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL) , Barcelona , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - Roel Vermeulen
- Medical Research Council-Health Protection Agency Centre for Environment and Health , Imperial College London , London , United Kingdom
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology , Utrecht University , Utrecht , The Netherlands
| | - Annette Vriens
- Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
| | - Martine Vrijheid
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) , Madrid , Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL) , Barcelona , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Catalonia , Spain
| | - John Henderson
- Department of Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , U.K
| | - Paolo Vineis
- Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
- Department of Epidemiology and Biostatistics, The School of Public Health , Imperial College London , London , United Kingdom
- IIGM, Italian Institute for Genomic Medicine , Turin , Italy
| |
Collapse
|
7
|
Chaiyawat P, Weeraphan C, Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V. Elevated O-GlcNAcylation of Extracellular Vesicle Proteins Derived from Metastatic Colorectal Cancer Cells. Cancer Genomics Proteomics 2016; 13:387-398. [PMID: 27566657 PMCID: PMC5070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND O-GlcNAcylation is a single sugar attachment of serine and/or threonine residues on intracellular proteins. Recent reports reveal that it can modify several secretory proteins; however, the underlying mechanisms are largely unexplored. MATERIALS AND METHODS To investigate whether extracellular vesicles (EVs) carry secretory O-GlcNAc-modified proteins that were isolated from colorectal cancer (CRC) cells, two-dimensional gel electrophoresis followed with O-GlcNAc immunoblotting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied. RESULTS It was revealed that the O-GlcNAc modification of many EV proteins was increased in metastatic cells. Among these, transitional endoplasmic reticulum ATPase (TER ATPase) and RuVB-like1 were successfully confirmed for the O-GlcNAc modification in which the levels were significantly higher in EVs of metastatic CRC cell line. CONCLUSION These data, demonstrate that proteins carried by EVs are O-GlcNAc-modified. Importantly, elevated aberrant O-GlcNAcylation of EV proteins might serve as a potential biomarker of metastatic CRC.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Chantragan Srisomsap
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Voraratt Champattanachai
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
8
|
Ogawa M, Sawaguchi S, Furukawa K, Okajima T. N-acetylglucosamine modification in the lumen of the endoplasmic reticulum. Biochim Biophys Acta Gen Subj 2015; 1850:1319-24. [PMID: 25791024 DOI: 10.1016/j.bbagen.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification of epidermal growth factor (EGF) domains catalyzed by EGF domain O-GlcNAc transferase (EOGT) is the first example of GlcNAc modification in the lumen of the endoplasmic reticulum (ER). SCOPE OF REVIEW This review summarizes current knowledge on the EOGT-catalyzed O-GlcNAc modification of EGF domains obtained through biochemical characterization, genetic analysis in Drosophila, and identification of human EOGT mutation. Additionally, this review discusses GTDC2-another ER protein homologous to EOGT that catalyzes the GlcNAc modification of O-mannosylated α-dystroglycan-and other components of the biosynthetic pathway involved in GlcNAc modification in the ER lumen. MAJOR CONCLUSIONS GlcNAc modification in the ER lumen has been identified as a novel type of protein modification that regulates specific protein function. Moreover, abnormal GlcNAc modification in the ER lumen is responsible for Adams-Oliver syndrome and Walker-Warburg syndrome. GENERAL SIGNIFICANCE Elucidation of the biological function of GlcNAc modification in the ER lumen will provide new insights into the unique roles of O-glycans, whose importance has been demonstrated in multifunctional glycoproteins such as Notch receptors and α-dystroglyan.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Shogo Sawaguchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|