1
|
Bamigbade GB, Oyelami OI, Babalola OO, Adewolu A, Omemu AM, Ogunsanya TF, Sanusi JOF, Daniel OM. An updated comprehensive review on waste valorization: Informetric analysis, current insights and future perspectives on cereal waste and byproduct utilization for sustainable industrial applications. BIORESOURCE TECHNOLOGY 2025; 418:131868. [PMID: 39581479 DOI: 10.1016/j.biortech.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Cereal crops have been integral to human sustenance since the Neolithic era which have earned significant attention as staple foods. The year-round cultivation and consumption of cereal-based products have led to the escalating global production of cereals and a rise in industrial processing which results in significant waste generation. These wastes contain high-value nutrients such as carbohydrates, proteins, and lipids. Due to their dense nutritional values, there is a need to link the diverse array of nutrients in major cereal wastes and by-products to their functionalities and relevant industrial applications. This will not only promote sustainable waste management but also economic stability. Existing studies on cereal research were investigated using informetric analysis to provide a quantitative outlook and identify key trends, research priorities, and gaps in cereal studies. Overall, this review presents a comprehensive update on the past, present, and future of sustainable cereal waste valorization, highlighting previous studies and providing insights for future exploration of these biowastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria.
| | - Oluwaseun Isaac Oyelami
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| | - Abiodun Adewolu
- Department of Chemistry and Biochemistry, Chemical Science Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Adebukunola Mobolaji Omemu
- Department of Hospitality and Tourism, College of Food Science and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tobiloba Felix Ogunsanya
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | | | - Olujimi Makanjuola Daniel
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| |
Collapse
|
2
|
Castro-Jácome TP, Tovar-Pérez EG, Alcántara-Quintana LE. Optimization of enzymatic production of anti-skin aging biopeptides from white sorghum [ Sorghum bicolor (L) Moench] grain. Prep Biochem Biotechnol 2025; 55:81-92. [PMID: 38949113 DOI: 10.1080/10826068.2024.2366994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Recently, kafirins from white sorghum [Sorghum bicolor (L) Moench] grain have shown promise as a source of biopeptides with anti-skin aging effects (anti-inflammatory, antioxidant, and inhibition of photoaging-associated enzymes). This study employed response surface methodology (RSM) to optimize the extraction and enzymatic hydrolysis of kafirins (KAF) for the production of peptides with anti-skin aging properties. The optimization of conditions (reaction time and enzyme/substrate ratio) for liquefaction with α-amylase and hydrolysis of KAF with alcalase was performed using 32 complete factorial designs. Subsequently, ultrafiltered peptide extracts were obtained with molecular weights of 1-3 kDa (KAF-UF3) and lower than 1 kDa (KAF-UF1), which mainly contain hydrophobic amino acids (proline, leucine, isoleucine, phenylalanine, and valine) and peptide fractions with molecular weights of 0.69, 1.14, and 1.87 kDa. Consequently, the peptide extracts protected immortalized human keratinocytes (HaCaT cells) from ultraviolet B radiation (UVB)-induced damage by preventing the decrease and/or restoring the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)]. Furthermore, KAF-UF3 and KAF-UF1 inhibited (20-29%) elastase and collagenase overactivity in UVB-exposed murine fibroblasts (3T3 cells). Thus, KAF-UF3 and KAF-UF1 exhibited behavior similar to that observed with glutathione (GSH), suggesting their potential as functional peptide ingredients in skincare products.
Collapse
Affiliation(s)
- Tania P Castro-Jácome
- Integral Food Research Laboratory, Tepic Institute of Technology, Tepic, Nayarit, Mexico
| | - Erik G Tovar-Pérez
- School of Engineering, Autonomous University of Queretaro, Amealco Campus, Amealco de Bonfil, Queretaro, Mexico
- Center of Applied Research in Biosystems (CARB-CIAB), Autonomous University of Queretaro, Amazcala Campus, El Marques, Queretaro, Mexico
| | - Luz E Alcántara-Quintana
- CONAHCYT - Cellular and Molecular Diagnosis Innovation Unit, Department of Innovation, Applied Science and Technology, San Luis Potosí Autonomous University, San Luis Potosi, S.L.P, Mexico
| |
Collapse
|
3
|
Xiao R, Lou H, Hu R, Li S, Zheng Y, Wang D, Xu Y, Xu Y, Li Y. Enzymatic production and physicochemical and functional properties of sorghum protein isolates. Int J Biol Macromol 2024; 283:137421. [PMID: 39542297 DOI: 10.1016/j.ijbiomac.2024.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Grain sorghum has emerged as a promising source for producing alternative proteins, yet current extraction methods lack efficiency. In this study, a novel enzymatic approach using α-amylase and cellulase on sorghum materials was developed to address this challenge. Comparisons were made among the proteins isolated from dry-milled sorghum flours, wet-milled sorghum gluten meals, and sorghum dried distiller's grains (DDG). Remarkably, proteins obtained from sorghum gluten meals demonstrated the highest protein purity (83-85 %) and recovery rate (92-93 %), followed by those from sorghum flour (purity 75-76 %) and DDG (purity 45-50 %). Physicochemical properties and functionalities of the isolated sorghum proteins were analyzed and compared with common commercial plant proteins (e.g., soy protein isolate, pea protein isolate, and wheat gluten). Sorghum proteins exhibited higher levels of crude fat content, α-helix, and random coil structures, along with higher surface hydrophobicity and oil holding capacity (OHC) compared to the commercial plant protein isolates. Notably, proteins extracted from sorghum flours displayed slightly higher α-helix and random coil structures, total sulfhydryl content, water holding capacity (WHC), OHC, and protein digestibility compared to proteins isolated from sorghum gluten meals. Overall, this study demonstrates that enzymatic processing is feasible in producing sorghum proteins and provides insights into their basic properties and functionalities.
Collapse
Affiliation(s)
- Ruoshi Xiao
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Haiwei Lou
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Ruijia Hu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Sang Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| | - Donghai Wang
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Youjie Xu
- Cener for Crops Utilization Research, Iowa State University, Ames, IO 50011, USA
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA 94710, USA.
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
4
|
Khan A, Tian R, Bean SR, Yerka M, Jiao Y. Transcriptome and metabolome analyses reveal regulatory networks associated with nutrition synthesis in sorghum seeds. Commun Biol 2024; 7:841. [PMID: 38987396 PMCID: PMC11237005 DOI: 10.1038/s42003-024-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.
Collapse
Affiliation(s)
- Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ran Tian
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Scott R Bean
- Grain Quality and Structure Research Unit, Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Melinda Yerka
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Yinping Jiao
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
5
|
Yang Y, Chen Q, Liu Q, Wang X, Bai W, Chen Z. Effect of High-Hydrostatic-Pressure Treatment on the Physicochemical Properties of Kafirin. Foods 2023; 12:4077. [PMID: 38002135 PMCID: PMC10670736 DOI: 10.3390/foods12224077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The kafirin derived from Jin Nuo 3 sorghum underwent a high-hydrostatic-pressure (HHP) treatment of 100, 300, and 600 MPa for 10 min to investigate alterations in its physicochemical attributes. The findings exhibited a reduction in protein solubility, declining from 83% to 62%, consequent to the application of the HHP treatment. However, this treatment did not lead to subunit-specific aggregation. The absorption intensity of UV light diminished, and the peak fluorescence absorption wavelength exhibited a shift from 342 nm to 344 nm, indicating an increased polarity within the amino acid microenvironment. In an aqueous solution, the specific surface area expanded from 294.2 m2/kg to 304.5 m2/kg, while the average particle-size value in a 70% ethanol solution rose to 26.3 nm. Conversely, the zeta-potential value decreased from 3.4 mV to 1.3 mV, suggesting a propensity for aggregation in ethanol solutions. A notable rise in the intermolecular β-sheet content to 21.06% was observed, along with a shift in the peak denaturation temperature from 76.33 °C to 86.33 °C. Additionally, the content of disulfide bonds increased to 14.5 μmol/g. Collectively, the application of the HHP treatment not only enhanced the thermal stability but also induced a more ordered secondary structure within the kafirin.
Collapse
Affiliation(s)
- Yajing Yang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Qingshan Liu
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| | - Wenbin Bai
- The Sorghum Research Institute, Shanxi Agricultural University, No. 238, Yunhua West Road, Yuci Direct, Jinzhong 030600, China; (Q.L.); (W.B.)
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu Direct, Jinzhong 030801, China; (Y.Y.); (Q.C.); (X.W.)
| |
Collapse
|
6
|
Gupta M, Asfaha DM, Ponnaiah G. Millets: A Nutritional Powerhouse With Anti-cancer Potential. Cureus 2023; 15:e47769. [PMID: 38021676 PMCID: PMC10676454 DOI: 10.7759/cureus.47769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Millets are important food crops widely grown by smallholder farmers in the arid and semi-arid regions of the world. Millets are rich in protein, dietary fiber, micronutrients, and have a low glycemic index (GI) and desirable bioactive compounds. Due to their higher nutritional content, millets are popularly known as "nutricereals". Coinciding with the United Nations and the Food and Agriculture Organization's declaration of 2023 as the "International Year of Millets," this review underscores the nutritional value of these grains from the Poaceae family. The consumption of nutricereals is associated with several health benefits including lowering of blood sugar levels (diabetes), controlling blood pressure, and providing protection against thyroid, cardiovascular, and cancer diseases. A review of the literature from PubMed and Google Scholar was done focusing on the health benefits and anti-cancer properties of different millets. Millets have a rich content of macronutrients like carbohydrates and proteins, as well as micronutrients and bioactive compounds, including dietary fibers, essential fatty acids, and phytochemicals. This article explores millets' nutritional elements, i.e., macronutrients, micronutrients, and bioactive compounds, and provides insights into the types of carbohydrates present, the prebiotic function of dietary fibers, and millets' low GI. The study identified the mechanisms by which millets may deter cancer growth, focusing on the roles of dietary fibers, plant protease inhibitors, and bioactive peptides. Additionally, it compared the mineral and vitamin content of millets to other common grains, such as rice and wheat, and explored the potential health advantages of millets over other cereal crops. This review systematically investigated the health advantages of millets, particularly, their anti-cancer capabilities. Dietary fibers, plant protease inhibitors, and bioactive peptides present in millets have the capacity to induce apoptosis, inhibit cell proliferation, and interact with gut microbiota leading to potential anti-cancer effects. This review also identified existing challenges in the bioavailability and effective delivery of millets' bioactive peptides, advocating for further research to maximize their health benefits.
Collapse
Affiliation(s)
- Mansha Gupta
- Medicine, Kasturba Medical College, Manipal, Manipal, IND
| | | | - Govintharaj Ponnaiah
- Molecular Biology/Plant Breeding and Genetics, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, IND
| |
Collapse
|
7
|
Benítez-Arvizu G, Castro-Jácome TP, Tovar-Pérez E, Alcántara-Quintana LE. [Antiproliferative, apoptotic, and antimigratory activities of kafirins on cervical cancer-derived cell lines]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S4-S11. [PMID: 36378016 PMCID: PMC10395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Background Cervical cancer is one of the leading causes of death in women worldwide, both in developed and developing countries. Therefore, effective treatment of cervical cancer with potential anti-tumor drugs is important. However, new treatments inspired by nutritional medicine are needed. Objective To use the human cervical cancer cell lines HeLa and SiHa to evaluate the antiproliferative, apoptotic, and migratory activity of sorghum (kafirins). Materials and methods The anticancer effects of the kafirins were examined by counting cells, MTT assays, apoptosis, and migration assays. Results This investigation showed that sorghum induced growth inhibition of HeLa and SiHa cells at a significant level. The growth inhibition is dose-dependent and irreversible. When HeLa and SiHa cells were treated with sorghum due to the activity of kafirins, morphological changes were observed, which were identified through the formation of apoptopic bodies. And the kafirins at concentrations of 37.5, 75, 150, and 300 μg/mL decreased the migration of HeLa cells and SiHa cells. Conclusion This paper demonstrates the induction of antiproliferative, apoptotic, and anti-migratory activity in HeLa and SiHa cells by kafirins. Sorghum may be used as a nutraceutical with potential cancer-prevention benefits.
Collapse
Affiliation(s)
- Gamaliel Benítez-Arvizu
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad Complementaria Banco de Sangre. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Tania Patricia Castro-Jácome
- Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos. Tepic, Nayarit, MéxicoInstituto Tecnológico de TepicMéxico
| | - Erik Tovar-Pérez
- Universidad Autónoma de Querétaro, Campus Amazcala, Facultad de Ingeniería. El Marqués, Querétaro, MéxicoUniversidad Autónoma de QuerétaroMéxico
| | - Luz Eugenia Alcántara-Quintana
- Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología. San Luis Potosí, San Luis Potosí, México Universidad Autónoma de San Luis PotosíMéxico
| |
Collapse
|
8
|
Espiricueta-Candelaria RS, Sánchez-Reséndiz AI, Martínez LM, Chuck-Hernández C. Development of functional resins with kafirin obtained with a food-compatible method for application in the baking industry. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2128428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Luz María Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, NL, Mexico
| | | |
Collapse
|
9
|
Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Jiang P, Liu N, Xiu Y, Wang W, Wang C, Zhang D, Li Z. Identification and analysis of antioxidant peptides from sorghum ( Sorghum bicolor L. Moench) on the basis of in vitro simulated gastrointestinal digestion. Food Funct 2022; 13:9635-9644. [PMID: 36017637 DOI: 10.1039/d2fo01399a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sorghum (Sorghum bicolor L. Moench) antioxidant peptides in vitro simulated through continuous gastrointestinal (GI) digestion in comparison with rice (Oryza sativa L.) were identified and functionally analysed. It was demonstrated that the protein digestibility of sorghum and rice increased by 11.27% and 14.10% after GI digestion, respectively. The concentrations of the rice peptides GG14, GG12, SF11, and LQ9 and the sorghum peptide KP9 in the gastrointestinal tract were 0.018, 0.712, 0.548, 0.188, and 0.265 μg mL-1, respectively. An assay of the scavenging ability showed that the sorghum peptide KP9 had the strongest ABTS-scavenging ability, with an IC50 value of 44.44 mg mL-1. The rice peptide LQ9 had the strongest DPPH and OH radical scavenging activity, with IC50 values of 10.41 and 25.78 mg mL-1, respectively. These five selectively synthesized peptides were predicted to be nontoxic and to have good ADMET absorption properties. The results indicated that the sorghum and rice peptides obtained by in vitro digestion were separated and purified with certain antioxidant activities and could be consumed as functional foods to modulate certain chronic diseases.
Collapse
Affiliation(s)
- Peng Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China
| | - Nian Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Yuyang Xiu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Wenhao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China.,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China.,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| |
Collapse
|
12
|
Cian RE, Albarracín M, Garzón AG, Drago SR. Precooked sorghum flour as proper vehicle of ACE‐I and DPP‐IV inhibitory sorghum peptides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raúl E. Cian
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Micaela Albarracín
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Antonela G. Garzón
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Silvina R. Drago
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| |
Collapse
|
13
|
Semwal J, Ms M. In situ thermal modification of kafirin using infrared radiations and microwaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1903-1911. [PMID: 34516659 DOI: 10.1002/jsfa.11527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Kafirin is a prolamin protein located in the corneous endosperm of sorghum. The conventional thermal processing of kafirin reduces its solubility, which limits its utilization in the food industry. Therefore, the study was aimed to investigate the effect of in situ thermal modification of kafirin using two different electromagnetic thermal treatments, namely infrared (IR) and microwave (MW) radiation, on the physicochemical, structural, thermal, and antioxidant properties. RESULTS The results demonstrated that both the thermal modifications improved yield, purity, and solubility of the kafirin with a decrease in hydrophobicity. However, IR-treated samples showed higher solubility (910.67 g kg-1 ) and lower hydrophobicity (387.67). The IR modifications also improved the ratio of α helix/β sheets to a great extent. The alterations in the disulfide content were concomitant with the improvement in the thermal stability of kafirin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed variations in the band intensities of β- and γ-kafirin, indicating alterations in the kafirin subunits. Morphological examination of kafirin revealed surface withering and agglomeration. Notably, IR treatment improved the antioxidant activity more efficiently (from 32.11% to 74.05%). CONCLUSION Although both the IR and MW treatments modified kafirin, the effect seemed to be more pronounced in IR modification. The IR-modified kafirin had better solubility and lesser hydrophobicity than MW-modified kafirin. The physicochemical and structural changes induced by IR treatment improved the biological activity of kafirin, in terms of antioxidant activity. Therefore, it was concluded that the in situ IR modification of kafirin can alter its characteristic properties, improving its potential as a food ingredient. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Meera Ms
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
14
|
Dai L, Kong L, Cai X, Jiang P, Liu N, Zhang D, Li Z. Analysis of the Structure and Activity of Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Oligopeptides from Sorghum Kafirin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2010-2017. [PMID: 35130437 DOI: 10.1021/acs.jafc.1c04484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potential dipeptidyl peptidase IV (DPP-IV) inhibitory oligopeptides from sorghum kafirin were developed using in silico and in vitro methodologies for the management of diabetes. Twenty-eight peptides with 5-10 residues were identified from the papain hydrolysates of sorghum kafirin. Sixteen nontoxic DPP-IV inhibitory peptides were screened with a computer method based on molecular docking. Molecular docking revealed that LPFYPQ (LP6), GPVTPPILG (GP9), and LPFYPQGV (LP8) effectively inactivated DPP-IV by binding to its active sites with a low interaction energy. An in silico analysis of these three inhibitory oligopeptides indicated that they were all bound to the S1 and S2 active pockets of DPP-IV through hydrogen bonds and hydrophobic interactions. The in vitro inhibitory activity was also verified. The DPP-IV inhibitory activities of LP6 and LP8 decreased after gastric digestion and remained stable after intestinal digestion, and the GP9 inhibitory activity remained stable after gastrointestinal digestion. Experimental results from Caco-2 cells showed further inhibitory effects of oligopeptides on DPP-IV. The results are relevant to the exploration of biofunctional DPP-IV inhibitory peptides from sorghum as a treatment for patients with diabetes or in medical research.
Collapse
Affiliation(s)
- Lingyan Dai
- Department of Bioscience, College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Lingxin Kong
- Department of Bioscience, College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Xiao Cai
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Peng Jiang
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Nian Liu
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Dongjie Zhang
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Zhijiang Li
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, China
| |
Collapse
|
15
|
Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Famuwagun AA, Alashi AM, Gbadamosi SO, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE. Effect of Protease Type and Peptide Size on the In Vitro Antioxidant, Antihypertensive and Anti-Diabetic Activities of Eggplant Leaf Protein Hydrolysates. Foods 2021; 10:foods10051112. [PMID: 34069802 PMCID: PMC8157255 DOI: 10.3390/foods10051112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Solanum macrocarpon (eggplant) leaf protein isolate (ELI) was hydrolyzed using four different enzymes to produce hydrolysates from alcalase (AH), chymotrypsin (CH) pepsin (PH) and trypsin (TH). CH had an overall stronger antioxidant property and was separated using ultrafiltration membranes into <1, 1–3 and 3–5 kDa peptide fractions. Gel-permeation chromatography confirmed conversion of the ELI (average of 22 kDa) into protein hydrolysates that contained smaller peptides (<6 kDa). A total of 23 peptides consisting of tri and tetrapeptides were identified from the CH, which is a wider spectrum when compared to seven for AH and four each for TH and PH. CH exhibited stronger scavenging activities against DPPH and hydroxyl radicals. CH and TH exhibited the strongest inhibitions against angiotensin-converting enzyme. In contrast, AH was the strongest inhibitor of α-amylase while AH and PH had strong inhibitory activities against α-glucosidase when compared with other hydrolysates. Ultrafiltration fractionation produced peptides that were stronger (p < 0.05) scavengers of DPPH, and hydroxyl radicals, in addition to better metal-chelating and enzyme inhibition agents. The study concluded that the eggplant protein hydrolysates and the UF fractions may find applications in tackling oxidative stress-related diseases and conditions involving excessive activities of the metabolic enzymes.
Collapse
Affiliation(s)
- Akinsola A. Famuwagun
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
- Correspondence: ; Tel.: +234-7038688258
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| | - Saka O. Gbadamosi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| | - Kehinde A. Taiwo
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Durodoluwa Oyedele
- Department of Soil and Land Resources Management, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Odunayo C. Adebooye
- Department of Agronomy, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife 220002, Nigeria;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.M.A.); (S.O.G.); (R.E.A.)
| |
Collapse
|