1
|
Ippolito G, Bertaccini R, Tarasi L, Di Gregorio F, Trajkovic J, Battaglia S, Romei V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022; 10:biomedicines10123189. [PMID: 36551945 PMCID: PMC9775381 DOI: 10.3390/biomedicines10123189] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations (7-13 Hz) are the dominant rhythm in both the resting and active brain. Accordingly, translational research has provided evidence for the involvement of aberrant alpha activity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia, major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes at play, not to mention recent technical and methodological advances in this domain. Herein, we seek to address this issue by reviewing the literature gathered on this topic over the last ten years. For each neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger the associated symptomatology, as well as a summary of the most relevant studies and scientific contributions issued throughout the last decade. We conclude with some advice and recommendations that might improve future inquiries within this field.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
2
|
Mackintosh AJ, de Bock R, Lim Z, Trulley VN, Schmidt A, Borgwardt S, Andreou C. Psychotic disorders, dopaminergic agents and EEG/MEG resting-state functional connectivity: A systematic review. Neurosci Biobehav Rev 2021; 120:354-371. [PMID: 33171145 DOI: 10.1016/j.neubiorev.2020.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Both dysconnectivity and dopamine hypotheses are two well researched pathophysiological models of psychosis. However, little is known about the association of dopamine dysregulation with brain functional connectivity in psychotic disorders, specifically through the administration of antipsychotic medication. In this systematic review, we summarize the existing evidence on the association of dopaminergic effects with electro- and magnetoencephalographic (EEG/MEG) resting-state brain functional connectivity assessed by sensor- as well as source-level measures. A wide heterogeneity of results was found amongst the 20 included studies with increased and decreased functional connectivity in medicated psychosis patients vs. healthy controls in widespread brain areas across all frequency bands. No systematic difference in results was seen between studies with medicated and those with unmedicated psychosis patients and very few studies directly investigated the effect of dopamine agents with a pre-post design. The reported evidence clearly calls for longitudinal EEG and MEG studies with large participant samples to directly explore the association of antipsychotic medication effects with neural network changes over time during illness progression and to ultimately support the development of new treatment strategies.
Collapse
Affiliation(s)
- Amatya Johanna Mackintosh
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland
| | - Renate de Bock
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland
| | - Zehwi Lim
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland
| | - Valerie-Noelle Trulley
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - André Schmidt
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland
| | - Stefan Borgwardt
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Andreou
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
3
|
Hare SM, Ford JM, Mathalon DH, Damaraju E, Bustillo J, Belger A, Lee HJ, Mueller BA, Lim KO, Brown GG, Preda A, van Erp TGM, Potkin SG, Calhoun VD, Turner JA. Salience-Default Mode Functional Network Connectivity Linked to Positive and Negative Symptoms of Schizophrenia. Schizophr Bull 2019; 45:892-901. [PMID: 30169884 PMCID: PMC6581131 DOI: 10.1093/schbul/sby112] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Schizophrenia is a complex, debilitating mental disorder characterized by wide-ranging symptoms including delusions, hallucinations (so-called positive symptoms), and impaired motor and speech/language production (so-called negative symptoms). Salience-monitoring theorists propose that abnormal functional communication between the salience network (SN) and default mode network (DMN) begets positive and negative symptoms of schizophrenia, yet prior studies have predominately reported links between disrupted SN/DMN functional communication and positive symptoms. It remains unclear whether disrupted SN/DMN functional communication explains (1) solely positive symptoms or (2) both positive and negative symptoms of schizophrenia. To address this question, we incorporate time-lag-shifted functional network connectivity (FNC) analyses that explored coherence of the resting-state functional magnetic resonance imaging signal of 3 networks (anterior DMN, posterior DMN, and SN) with fixed time lags introduced between network time series (1 TR = 2 s; 2 TR = 4 s). Multivariate linear regression analysis revealed that severity of disordered thought and attentional deficits were negatively associated with 2 TR-shifted FNC between anterior DMN and posterior DMN. Meanwhile, severity of flat affect and bizarre behavior were positively associated with 1 TR-shifted FNC between anterior DMN and SN. These results provide support favoring the hypothesis that lagged SN/DMN functional communication is associated with both positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
| | - Judith M Ford
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| | | | - Juan Bustillo
- Department of Psychiatry and Behavioral Sciences, The University of New Mexico, Albuquerque, NM
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hyo Jong Lee
- Division of Computer Science and Engineering, CAIIT, Chonbuk National University, Jeonju, Republic of Korea
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
- Geriatric Research, Education and Clinical Center (GRECC), Minneapolis VA Health Care System, Minneapolis, MN
| | - Gregory G Brown
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Jessica A Turner
- Neuroscience Institute, Georgia State University, Atlanta, GA
- The Mind Research Network, Albuquerque, NM
- Department of Psychology, Georgia State University, Atlanta, GA
| |
Collapse
|
4
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp JF, Muthukumaraswamy SD. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology (Berl) 2018; 235:3479-3493. [PMID: 30426183 DOI: 10.1007/s00213-018-5064-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study. METHODS We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal. RESULTS AND CONCLUSIONS Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|
5
|
Markovic A, Achermann P, Rusterholz T, Tarokh L. Heritability of Sleep EEG Topography in Adolescence: Results from a Longitudinal Twin Study. Sci Rep 2018; 8:7334. [PMID: 29743546 PMCID: PMC5943340 DOI: 10.1038/s41598-018-25590-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
The topographic distribution of sleep EEG power is a reflection of brain structure and function. The goal of this study was to examine the degree to which genes contribute to sleep EEG topography during adolescence, a period of brain restructuring and maturation. We recorded high-density sleep EEG in monozygotic (MZ; n = 28) and dizygotic (DZ; n = 22) adolescent twins (mean age = 13.2 ± 1.1 years) at two time points 6 months apart. The topographic distribution of normalized sleep EEG power was examined for the frequency bands delta (1-4.6 Hz) to gamma 2 (34.2-44 Hz) during NREM and REM sleep. We found highest heritability values in the beta band for NREM and REM sleep (0.44 ≤ h2 ≤ 0.57), while environmental factors shared amongst twin siblings accounted for the variance in the delta to sigma bands (0.59 ≤ c2 ≤ 0.83). Given that both genetic and environmental factors are reflected in sleep EEG topography, our results suggest that topography may provide a rich metric by which to understand brain function. Furthermore, the frequency specific parsing of the influence of genetic from environmental factors on topography suggests functionally distinct networks and reveals the mechanisms that shape these networks.
Collapse
Affiliation(s)
- Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rusterholz
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Alamian G, Hincapié AS, Pascarella A, Thiery T, Combrisson E, Saive AL, Martel V, Althukov D, Haesebaert F, Jerbi K. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges. Clin Neurophysiol 2017; 128:1719-1736. [DOI: 10.1016/j.clinph.2017.06.246] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
|
7
|
Aberrant Network Activity in Schizophrenia. Trends Neurosci 2017; 40:371-382. [PMID: 28515010 DOI: 10.1016/j.tins.2017.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/25/2022]
Abstract
Brain dynamic changes associated with schizophrenia are largely equivocal, with interpretation complicated by many factors, such as the presence of therapeutic agents and the complex nature of the syndrome itself. Evidence for a brain-wide change in individual network oscillations, shared by all patients, is largely equivocal, but stronger for lower (delta) than for higher (gamma) bands. However, region-specific changes in rhythms across multiple, interdependent, nested frequencies may correlate better with pathology. Changes in synaptic excitation and inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, while enhancing thalamocortical communication in this frequency band. The contrasting relationships between delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-regional connectivity, leading to a disruption in temporal communication between higher-order brain regions associated with mental time travel.
Collapse
|