1
|
Sala A, Gosseries O, Laureys S, Annen J. Advances in neuroimaging in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:97-127. [PMID: 39986730 DOI: 10.1016/b978-0-443-13408-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorders of consciousness (DoC) are a heterogeneous spectrum of clinical conditions, including coma, unresponsive wakefulness syndrome, and minimally conscious state. DoC are clinically defined on the basis of behavioral cues expressed by the patients, on the assumption that such behavioral responses of the patient are representative of the patient's degree of consciousness impairment. However, many studies have highlighted the issues arising from formulating a DoC diagnosis merely on behavioral assessment. Overcoming the limitations of behavioral assessment, neuroimaging provides a direct window on the cerebral activity of the patient, bypassing the motor, perceptual, or cognitive deficits that might hamper the patient's ability to produce an appropriate behavioral response. This chapter provides an overview of available molecular, functional, and structural neuroimaging evidence in patients with DoC. This chapter introduces the neuroimaging tools available in the clinical settings of nuclear medicine and neuroradiology and presents the evidence on the role of neuroimaging tools to improve the clinical management of DoC patients, from the standpoint of differential diagnosis and prognosis. Last, we outline the open questions in the field, and point at actions that are urgently needed to fully exploit neuroimaging tools to advance scientific understanding and clinical management of DoC.
Collapse
Affiliation(s)
- Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium; Department of Data Analysis, University of Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
3
|
Jang SH, Kwon HG. Subcortical white matter differences according to presence of disorders of consciousness in hypoxic-ischemic brain injury: a tract-based spatial statistics study. Neuroreport 2024; 35:904-908. [PMID: 39166416 DOI: 10.1097/wnr.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We investigated differences in subcortical white matter according to the presence disorders of consciousness (DOC) in patients with hypoxic-ischemic brain injury (HI-BI), using tract-based spatial statistics (TBSS). Thirty-two consecutive patients with HI-BI were recruited. The patients were assigned in group A [preserved consciousness (Glasgow Coma Scale: 15 and Coma Recovery Scale-revised (CRS-R): 23, 9 patients)] or group B [DOC present (Glasgow Coma Scale <15 and CRS-R < 23, 20 patients)]. Voxel-wise statistical analysis of fractional anisotropy data was performed by using TBSS as implemented in the FMRIB Software Library. We calculated mean fractional anisotropy values across the white matter skeleton and within 48 regions of interest (ROIs) based on intersections between the skeleton and the probabilistic Johns Hopkins University white matter atlases. Among the 48 ROIs examined, the fractional anisotropy values of two ROIs (the left superior corona radiata, and left tapetum) were significantly lower in group B than in group A ( P < 0.05). No significant differences were observed, however, in the other 46 ROIs ( P > 0.05). Our results suggest that abnormalities of the superior corona radiata and tapetum may be critical for DOC presence in patients with HI-BI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu
| | - Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Sungnam-si, Republic of Korea
| |
Collapse
|
4
|
Soares JF, Abreu R, Lima AC, Sousa L, Batista S, Castelo-Branco M, Duarte JV. Task-based functional MRI challenges in clinical neuroscience: Choice of the best head motion correction approach in multiple sclerosis. Front Neurosci 2022; 16:1017211. [PMID: 36570849 PMCID: PMC9768441 DOI: 10.3389/fnins.2022.1017211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Functional MRI (fMRI) is commonly used for understanding brain organization and connectivity abnormalities in neurological conditions, and in particular in multiple sclerosis (MS). However, head motion degrades fMRI data quality and influences all image-derived metrics. Persistent controversies regarding the best correction strategy motivates a systematic comparison, including methods such as scrubbing and volume interpolation, to find optimal correction models, particularly in studies with clinical populations prone to characterize by high motion. Moreover, strategies for correction of motion effects gain more relevance in task-based designs, which are less explored compared to resting-state, have usually lower sample sizes, and may have a crucial role in describing the functioning of the brain and highlighting specific connectivity changes. Methods We acquired fMRI data from 17 early MS patients and 14 matched healthy controls (HC) during performance of a visual task, characterized motion in both groups, and quantitatively compared the most used and easy to implement methods for correction of motion effects. We compared task-activation metrics obtained from: (i) models containing 6 or 24 motion parameters (MPs) as nuisance regressors; (ii) models containing nuisance regressors for 6 or 24 MPs and motion outliers (scrubbing) detected with Framewise Displacement or Derivative or root mean square VARiance over voxelS; and (iii) models with 6 or 24 MPs and motion outliers corrected through volume interpolation. To our knowledge, volume interpolation has not been systematically compared with scrubbing, nor investigated in task fMRI clinical studies in MS. Results No differences in motion were found between groups, suggesting that recently diagnosed MS patients may not present problematic motion. In general, models with 6 MPs perform better than models with 24 MPs, suggesting the 6 MPs as the best trade-off between correction of motion effects and preservation of valuable information. Parsimonious models with 6 MPs and volume interpolation were the best combination for correcting motion in both groups, surpassing the scrubbing methods. A joint analysis regardless of the group further highlighted the value of volume interpolation. Discussion Volume interpolation of motion outliers is an easy to implement technique, which may be an alternative to other methods and may improve the accuracy of fMRI analyses, crucially in clinical studies in MS and other neurological populations.
Collapse
Affiliation(s)
- Júlia F. Soares
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Rodolfo Abreu
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Lima
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lívia Sousa
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sónia Batista
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,*Correspondence: João Valente Duarte,
| |
Collapse
|
5
|
Latency structure of BOLD signals within white matter in resting-state fMRI. Magn Reson Imaging 2022; 89:58-69. [PMID: 34999161 PMCID: PMC9851671 DOI: 10.1016/j.mri.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Previous studies have demonstrated that BOLD signals in gray matter in resting-state functional MRI (RSfMRI) have variable time lags, representing apparent propagations of fMRI BOLD signals in gray matter. We complemented existing findings and explored the corresponding variations of signal latencies in white matter. METHODS We used data from the Brain Genomics Superstruct Project, consisting of 1412 subjects (both sexes included) and divided the dataset into ten equal groups to study both the patterns and reproducibility of latency estimates within white matter. We constructed latency matrices by computing cross-covariances between voxel pairs. We also applied a clustering analysis to identify functional networks within white matter, based on which latency analysis was also performed to investigate lead/lag relationship at network level. A dataset consisting of various sensory states (eyes closed, eyes open and eyes open with fixation) was also included to examine the relationship between latency structure and different states. RESULTS Projections of voxel latencies from the latency matrices were highly correlated (average Pearson correlation coefficient = 0.89) across the subgroups, confirming the reproducibility and structure of signal lags in white matter. Analysis of latencies within and between networks revealed a similar pattern of inter- and intra-network communication to that reported for gray matter. Moreover, a dominant direction, from inferior to superior regions, of BOLD signal propagation was revealed by higher resolution clustering. The variations of lag structure within white matter are associated with different sensory states. CONCLUSIONS These findings provide additional insight into the character and roles of white matter BOLD signals in brain functions.
Collapse
|
6
|
Qureshi AY, Stevens RD. Mapping the Unconscious Brain: Insights From Advanced Neuroimaging. J Clin Neurophysiol 2022; 39:12-21. [PMID: 34474430 DOI: 10.1097/wnp.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SUMMARY Recent advances in neuroimaging have been a preeminent factor in the scientific effort to unravel mechanisms of conscious awareness and the pathophysiology of disorders of consciousness. In the first part of this review, we selectively discuss operational models of consciousness, the biophysical signal that is measured using different imaging modalities, and knowledge on disorders of consciousness that has been gleaned with each neuroimaging modality. Techniques considered include diffusion-weighted imaging, diffusion tensor imaging, different types of nuclear medicine imaging, functional MRI, magnetoencephalography, and the combined transcranial magnetic stimulation-electroencephalography approach. In the second part of this article, we provide an overview of how advanced neuroimaging can be leveraged to support neurological prognostication, the use of machine learning to process high-dimensional imaging data, potential applications in clinical practice, and future directions.
Collapse
Affiliation(s)
- Abid Y Qureshi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Missouri, U.S.A.; and
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care, Neurology, Radiology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
7
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
8
|
Sanz LRD, Thibaut A, Edlow BL, Laureys S, Gosseries O. Update on neuroimaging in disorders of consciousness. Curr Opin Neurol 2021; 34:488-496. [PMID: 34054109 PMCID: PMC8938964 DOI: 10.1097/wco.0000000000000951] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging has acquired a prominent place in the assessment of disorders of consciousness (DoC). Rapidly evolving technologies combined with state-of-the-art data analyses open new horizons to probe brain activity, but selecting appropriate imaging modalities from the plethora of available techniques can be challenging for clinicians. This update reviews selected advances in neuroimaging that demonstrate clinical relevance and translational potential in the assessment of severely brain-injured patients with DoC. RECENT FINDINGS Magnetic resonance imaging and high-density electroencephalography provide measurements of brain connectivity between functional networks, assessments of language function, detection of covert consciousness, and prognostic markers of recovery. Positron emission tomography can identify patients with preserved brain metabolism despite clinical unresponsiveness and can measure glucose consumption rates in targeted brain regions. Transcranial magnetic stimulation and near-infrared spectroscopy are noninvasive and practical tools with promising clinical applications. SUMMARY Each neuroimaging technique conveys advantages and pitfalls to assess consciousness. We recommend a multimodal approach in which complementary techniques provide diagnostic and prognostic information about brain function. Patients demonstrating neuroimaging evidence of covert consciousness may benefit from early adapted rehabilitation. Translating methodological advances to clinical care will require the implementation of recently published international guidelines and the integration of neuroimaging techniques into patient-centered decision-making algorithms.
Collapse
Affiliation(s)
- Leandro R. D. Sanz
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
9
|
Cao B, Guo Y, Guo Y, Xie Q, Chen L, Huang H, Yu R, Huang R. Time-delay structure predicts clinical scores for patients with disorders of consciousness using resting-state fMRI. NEUROIMAGE: CLINICAL 2021; 32:102797. [DOI: 10.1016/j.nicl.2021.102797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
|