1
|
Pastina JT, Abel MG, Bollinger LM, Best SA. Topical Cannabidiol Application May Not Attenuate Muscle Soreness or Improve Performance: A Randomized, Double-Blinded, Placebo-Controlled Pilot Study. Cannabis Cannabinoid Res 2025; 10:445-456. [PMID: 38980809 DOI: 10.1089/can.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose: The purpose of this pilot study was to investigate cannabidiol (CBD) cream's effects on muscle soreness and performance after exercise. Materials and Methods: This double-blinded, placebo-controlled experiment included 15 men and 13 women (n = 28; mean ± standard deviation age: 23.29 ± 2.54 years) untrained in lower-body resistance training. Participants were randomized into control (NG, n = 9), CBD (CG, n = 9), or placebo (PG, n = 10) groups. Participants completed a lower-body fatigue protocol (FP) consisting of unilateral maximal concentric and eccentric isokinetic muscle actions of the quadriceps and hamstrings (5 sets, 10 repetitions, both legs). CG and PG participants applied ∼100 mg CBD or placebo cream, respectively, matched for weight and appearance to the quadriceps on three separate days. NG participants engaged in a sitting rest period matched in duration to cream application processes. Questionnaires, pressure-pain threshold (PPT), peak torque test (PTT), and countermovement jump (CMJ) were assessed. Mixed-model analysis of variance was conducted to assess main effects and interactions (group × muscle × time; group × time). Results: There were no significant interactions or main effects for group for PPT, CMJ, or PTT. There were main effects for time (p < 0.05) for all soreness questions, PPT, CMJ, and PTT. There was one significant interaction (group × time; p = 0.045) for cream/rest effect questions, in which PG participants perceived the effect of cream to be greater than the effect of rest for NG participants. There were main effects for group (p ≤ 0.031) for all soreness questions, in which PG participants perceived enhanced recovery. Conclusions: The present pilot study did not discover any significant impacts of CBD cream use for muscle recovery. For individuals seeking to attenuate muscle soreness and improve performance, the current dose of this topical CBD product may not be an effective treatment.
Collapse
Affiliation(s)
- Joseph T Pastina
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Mark G Abel
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Lance M Bollinger
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Stuart A Best
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Castro-da-Silva MLRD, Farias-de-França AP, Ravazoli I, Oliveira KC, Orsi VDC, Yoshida EH, Tavares RVDS, Oshima-Franco Y. Multi targets of cannabidiol (CBD) on skeletal mammalian and avian neuromuscular preparations. Nat Prod Res 2025; 39:787-796. [PMID: 38054804 DOI: 10.1080/14786419.2023.2290675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Cannabidiol (CBD) has been used in diseases that affect the central nervous system. Its effects on the peripheral synapses are of great interest, since endocannabinoid receptors are expressed in muscles. CBD (0.3 mM) was analysed using mammalian and avian neuromuscular preparations, through myographic techniques in complementary protocols. Mammalian cells were examined by light microscopy while exogenous acetylcholine (40 µM) and potassium chloride (100 mM) were added into avian preparations, before and at the end of experiments. Pharmacological tools such as atropine (2 µM), polyethylene glycol (PEG 400, 20 µM), Ca2+ (1.8 mM), F55-6 (20 µg/mL), and nifedipine (1.3 mM) were assessed with CBD. In mice, CBD causes a facilitatory effect and paralysis, whereas in avian, paralysis. Concluding, CBD is responsible for activated or inhibited channels, for ACh release via muscarinic receptor modulation, and by the inhibition of nicotinic receptors leading to neuromuscular blockade, with no damage to striated muscle cells.
Collapse
Affiliation(s)
| | | | | | | | - Valéria de Campos Orsi
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | - Edson Hideaki Yoshida
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | | | - Yoko Oshima-Franco
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
3
|
Roberti R, Comacchio C, Colizzi M, Mallio CA, Russo E, Di Gennaro G. In Web We Trust: The Promised Cannabidiol Effects on Obesity as a Matter of Language and Marketing on Webpages. Curr Neuropharmacol 2025; 23:780-786. [PMID: 39757644 PMCID: PMC12163495 DOI: 10.2174/011570159x333465241121184404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Today more and more people search the web for health-related information, risking to come across misinformation and biased content that may affect their treatment decisions. Cannabidiol (CBD) is among the products for which beneficial effects have been claimed, often at the expense of the risks; further keeping in mind unreliable information reported on products themselves. OBJECTIVE This study evaluated the quality of information retrieved by Google on the potential effects of CBD on weight management, also comparing Italian and English contents, hypothesizing generally low quality and language-driven differences in offered information. METHODS Queries regarding cannabidiol and obesity-related terms were entered into Google, ranking the first 50 webpages from both merged Italian and English results for analysis. RESULTS Of the outputs, 37 Italian and 27 English websites addressed the topic and were not related to medical literature. As expected, a substantial proportion of information was of low quality, with English sites performing better (29.6%) than Italian ones (54%, p = 0.052) in terms of "JAMA benchmarks" for trustworthiness of information. Also, while most English sites were "Health portals" (40.7%) with neutral stance toward CBD (74.1%), Italian ones were predominantly "commercial" (78.4%, p = 0.001) and promoting CBD use (89.2%, p < 0.001). CONCLUSION Findings suggest the need for better online information, especially in non-Englishspeaking countries, as scarce and unequal information can lead people to make poor health choices, with potentially harmful consequences.
Collapse
Affiliation(s)
- Roberta Roberti
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Carla Comacchio
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Bonanni R, Ratano P, Cariati I, Tancredi V, Cifelli P. Treatment Strategies for Painful Pelvic Floor Conditions: A Focus on the Potential Benefits of Cannabidiol. Biomolecules 2024; 14:1627. [PMID: 39766334 PMCID: PMC11727302 DOI: 10.3390/biom14121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Painful conditions of the pelvic floor include a set of disorders of the pelvic region, discreetly prevalent in the female population, in which pain emerges as the predominant symptom. Such disorders have a significant impact on quality of life as they impair couple relationships and promote states of anxiety and irascibility in affected individuals. Although numerous treatment approaches have been proposed for the management of such disorders, there is a need to identify strategies to promote muscle relaxation, counter pelvic pain, and reduce inflammation. The endocannabinoid system (ECS) represents a complex system spread throughout the body and is involved in the regulation of numerous physiological processes representing a potential therapeutic target for mood and anxiety disorders as well as pain management. Cannabidiol (CBD), acting on the ECS, can promote relief from hyperalgesia and allodynia typical of disorders affecting the pelvic floor and promote muscle relaxation by restoring balance to this delicate anatomical region. However, its use is currently limited due to a lack of evidence supporting its efficacy and harmlessness, and the mechanism of action on the ECS remains partially unexplored to this day. This comprehensive review of the literature examines the impact of pain disorders affecting the pelvic floor and major treatment approaches and brings together the main evidence supporting CBD in the management of such disorders.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Patrizia Ratano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
5
|
Schouten M, Dalle S, Costamagna D, Ramaekers M, Bogaerts S, VAN Thienen R, Peers K, Thomis M, Koppo K. Palmitoylethanolamide Does Not Affect Recovery from Exercise-Induced Muscle Damage in Healthy Males. Med Sci Sports Exerc 2024; 56:2372-2384. [PMID: 39086058 DOI: 10.1249/mss.0000000000003517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Strenuous eccentric exercise (EE) induces microstructural muscle damage, which decreases muscle performance. Palmitoylethanolamide (PEA) exerts analgesic and anti-inflammatory effects in clinical pain conditions and preclinical models of experimentally induced inflammation. This might hold clues for improved recovery from EE. Therefore, the current study evaluates the effect of PEA supplementation on functional and molecular responses to a single EE bout. METHODS Eleven healthy male participants were included in a double-blind crossover study in which they received PEA (350 mg Levagen+) or placebo (maltodextrin) supplements, in a randomized order. In each experimental condition, participants performed an acute bout of EE (24 × 10 eccentric contractions of the knee extensors on an isokinetic dynamometer). At baseline, 24 (D1), 48 (D2), 72 (D3), and 120 h (D5) following EE, maximal voluntary contraction and jump height were measured. Blood samples were collected at baseline and on D1-D5, and muscle biopsies were collected at baseline and on D2. Perceived muscle soreness, sleep quality, and food intake were recorded daily. RESULTS Muscle strength and jump height decreased following EE (up to ~40% and ~17%, respectively; Ptime < 0.05) in both conditions. This drop was accompanied by an increase in plasma creatine kinase and perceived muscle soreness ( Ptime < 0.05). Furthermore, EE, but not PEA, increased the expression of the myogenic marker Pax7 and of the catabolic markers p-FoxO1-3a, p62, and LC3BII/I ( Ptime < 0.05). CONCLUSIONS PEA supplementation does not improve muscle soreness, muscle strength, and jump performance following a single EE bout. In addition, PEA supplementation had no effect on local or systemic markers of muscle damage, catabolism, or regeneration.
Collapse
Affiliation(s)
- Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, BELGIUM
| | - Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, BELGIUM
| | - Domiziana Costamagna
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, BELGIUM
| | - Monique Ramaekers
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, BELGIUM
| | - Stijn Bogaerts
- Department of Development and Regeneration, Locomotor and Neurological Disorders, KU Leuven, Leuven, BELGIUM
| | - Ruud VAN Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Koen Peers
- Department of Development and Regeneration, Locomotor and Neurological Disorders, KU Leuven, Leuven, BELGIUM
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, BELGIUM
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
6
|
Stellpflug SJ, Stolbach A, Ghorayeb J, Magraken E, Twohey E, Lapoint J, deWeber K. Cannabis in combat sports: position statement of the Association of Ringside Physicians. PHYSICIAN SPORTSMED 2024; 52:432-443. [PMID: 38949963 DOI: 10.1080/00913847.2024.2375788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/30/2024] [Indexed: 07/03/2024]
Abstract
and ARP Position Statement: Based on the available body of scientific evidence and with the goals of promoting safety of combat sports athletes and striving for the advancement of clean sport, the Association of Ringside Physicians recommends the following regarding cannabis:• Use of marijuana or synthetic cannabinoids by combat sports athletes is discouraged due to unproven benefits and many known adverse effects. Acute use can impair cognition and complex motor function, which likely leads to reduced performance in combat sports. Chronic use can increase risk for heart and lung disease, several cancers, schizophrenia, and can reduce testosterone in men and impair fertility. Benefits from cannabis in most contexts, including athletic performance, have not been proven.• Use of topical purified CBD is neither encouraged nor discouraged.• Since acute cannabis intoxication can impair complex cognitive and motor function, any athlete suspected of acute intoxication at the time of competition - based on clinical judgment - should be banned from that competition.• Wide-scale regulation of cannabis based on quantitative testing has limited usefulness in combat sports, for the following reasons:∘ Cannabis is not ergogenic and is likely ergolytic.∘ Concentrations in body fluids correlate poorly with clinical effects and timing of use.∘ Access to testing resources varies widely across sporting organizations.
Collapse
Affiliation(s)
| | - Andrew Stolbach
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joe Ghorayeb
- University of Medicine and Health Sciences, New York, NY, USA
| | | | - Eric Twohey
- Mayo Clinic Department of Physical Medicine and Rehabilitation, Rochester, MN, USA
| | - Jeff Lapoint
- Southern California Permanente Medical Group, San Diego Medical Center, Department of Emergency Medicine, San Diego, CA, USA
| | - Kevin deWeber
- SW Washington Sports Medicine Fellowship, Vancouver, WA, USA
| |
Collapse
|
7
|
Tathong T, Khamhan S, Soisungwan S, Phoemchalard C. Effects of Hemp-Derived Cannabidiol Supplementation on Blood Variables, Carcass Characteristics, and Meat Quality of Goats. Animals (Basel) 2024; 14:1718. [PMID: 38929337 PMCID: PMC11200617 DOI: 10.3390/ani14121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stress experienced by animals during pre-mortem management handling significantly affects both their welfare and the quality of the meat produced. Using hemp-derived CBD may offer several benefits in alleviating this issue. In this study, we investigated the effects of hemp-derived CBD supplementation on blood variables, growth performance, carcass characteristics, and meat quality in goats. Sixteen crossbred Boer goats were divided into four groups receiving a basal diet supplemented with 0 (control), 0.1, 0.2, or 0.3 mL CBD/30 kg body weight over 90 days. Although growth, carcass characteristics, and pH remained unaffected, CBD supplementation influenced several blood variables. Specifically, dietary CBD at 0.1-0.3 mL increased white blood cell (WBC) counts, while 0.3 mL CBD increased serum total protein, globulin, sodium, and carbon dioxide levels, potentially affecting protein metabolism and electrolyte balance. Over time, significant changes were noted in hematological profiles, kidney markers, protein profiles, and some electrolytes, indicating physiological adaptations. Regarding meat quality, supplementation with 0.2-0.3 mL of CBD linearly improved color redness and stability; moreover, CBD supplementation improved tenderness and textural properties, resulting in a softer meat texture. However, analysis using an E-nose indicated increased ammonia and organic solvent vapors in meat from the higher CBD groups. This study concluded that CBD supplementation up to 0.3 mL of CBD/30 kg body weight beneficially modulated blood biomarkers, meat color, and tenderness without adverse impacts on growth or carcass characteristics in goats.
Collapse
Affiliation(s)
- Tanom Tathong
- Department of Food Technology, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Supawut Khamhan
- That Phanom College, Nakhon Phanom University, Nakhon Phanom 48110, Thailand;
| | - Salinee Soisungwan
- Department of Food Technology, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Chirasak Phoemchalard
- Department of Agriculture, Mahidol University, Amnatcharoen Campus, Amnatcharoen 37000, Thailand;
- Excellence Center on Agriculture and Food for Health, Mahidol University, Amnatcharoen Campus, Amnatcharoen 37000, Thailand
| |
Collapse
|
8
|
Schouten M, Dalle S, Mantini D, Koppo K. Cannabidiol and brain function: current knowledge and future perspectives. Front Pharmacol 2024; 14:1328885. [PMID: 38288087 PMCID: PMC10823027 DOI: 10.3389/fphar.2023.1328885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid found in Cannabis sativa, commonly known as cannabis or hemp. Although currently available CBD products do not meet the safety standards of most food safety authorities to be approved as a dietary supplement or food additive, CBD has been gaining widespread attention in recent years due to its various potential health benefits. While primarily known for its therapeutic effects in managing epileptic seizures, psychosis, anxiety, (neuropathic) pain, and inflammation, CBD's influence on brain function has also piqued the interest of researchers and individuals seeking to enhance cognitive performance. The primary objective of this review is to gather, synthesize, and consolidate scientifically proven evidence on the impact of CBD on brain function and its therapeutic significance in treating neurological and mental disorders. First, basic background information on CBD, including its biomolecular properties and mechanisms of action is presented. Next, evidence for CBD effects in the human brain is provided followed by a discussion on the potential implications of CBD as a neurotherapeutic agent. The potential effectiveness of CBD in reducing chronic pain is considered but also in reducing the symptoms of various brain disorders such as epilepsy, Alzheimer's, Huntington's and Parkinson's disease. Additionally, the implications of using CBD to manage psychiatric conditions such as psychosis, anxiety and fear, depression, and substance use disorders are explored. An overview of the beneficial effects of CBD on aspects of human behavior, such as sleep, motor control, cognition and memory, is then provided. As CBD products remain largely unregulated, it is crucial to address the ethical concerns associated with their use, including product quality, consistency, and safety. Therefore, this review discusses the need for responsible research and regulation of CBD to ensure its safety and efficacy as a therapeutic agent for brain disorders or to stimulate behavioral and cognitive abilities of healthy individuals.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review 16 th edition-Analytical approaches in human sports drug testing 2022/2023. Drug Test Anal 2024; 16:5-29. [PMID: 37985429 DOI: 10.1002/dta.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
In this 16th edition of the annual banned-substance review on analytical approaches in human sports drug testing, literature on recent developments in this particular section of global anti-doping efforts that was published between October 2022 and September 2023 is summarized and discussed. Most recent additions to the continuously growing portfolio of doping control analytical approaches and investigations into analytical challenges in the context of adverse analytical findings are presented, taking into account existing as well as emerging challenges in anti-doping, with specific focus on substances and methods of doping recognized in the World Anti-Doping Agency's 2023 Prohibited List. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls, appreciating the exigence and core mission of anti-doping and, equally, the conflict arising from the opposingly trending extent of the athlete's exposome and the sensitivity of instruments nowadays commonly available in anti-doping laboratories.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|
10
|
Peltner LK, Gluthmann L, Börner F, Pace S, Hoffstetter RK, Kretzer C, Bilancia R, Pollastro F, Koeberle A, Appendino G, Rossi A, Newcomer ME, Gilbert NC, Werz O, Jordan PM. Cannabidiol acts as molecular switch in innate immune cells to promote the biosynthesis of inflammation-resolving lipid mediators. Cell Chem Biol 2023; 30:1508-1524.e7. [PMID: 37647900 DOI: 10.1016/j.chembiol.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.
Collapse
Affiliation(s)
- Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Lars Gluthmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Robert K Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
11
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Rojas-Valverde D, Fallas-Campos A. Cannabidiol in sports: insights on how CBD could improve performance and recovery. Front Pharmacol 2023; 14:1210202. [PMID: 37808192 PMCID: PMC10556669 DOI: 10.3389/fphar.2023.1210202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Daniel Rojas-Valverde
- Sport Injury Clinic (Rehab Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
- Núcleo de Estudios para el Alto Rendimiento y la Salud (CIDISAD-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
| | - Andrea Fallas-Campos
- Núcleo de Estudios para el Alto Rendimiento y la Salud (ACUAUNA-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|