1
|
Mendez EM, Mills JA, Suresh V, Stimpfl JN, Strawn JR. Trajectory and magnitude of response in adults with anxiety disorders: a Bayesian hierarchical modeling meta-analysis of selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and benzodiazepines. CNS Spectr 2024; 29:187-196. [PMID: 38523533 DOI: 10.1017/s1092852924000142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND How the trajectory of response to medication (and placebo response) varies among selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), benzodiazepines and across anxiety disorders is unknown. METHODS We performed a meta-analysis using weekly symptom severity data from randomized, parallel-group, placebo-controlled trials of SSRIs, SNRIs, and benzodiazepines in adults with anxiety disorders. Response was modeled for the standardized change in anxiety using Bayesian hierarchical models. RESULTS Across 122 trials (N=15,760), SSRIs, SNRIs, and benzodiazepines produced significant improvement in anxiety compared to placebo. Benzodiazepines produced faster improvement by the first week of treatment (p < 0.001). By week 8, the response for benzodiazepines and SSRIs (p = 0.103) and SNRIs (p = 0.911) did not differ nor did SSRIs and SNRIs differ (p = 0.057), although for patients with generalized anxiety disorder (GAD), the benzodiazepines produced greater improvement than SNRIs at week 8 (difference - 12.42, CrI: -25.05 to -0.78, p = 0.037). Medication response was similar across anxiety disorders except for benzodiazepines, which produced greater improvement over the first 4 weeks compared to SSRIs and SNRIs in panic disorder. For SSRIs and SNRIs, women improved more than men, and for benzodiazepines, older patients improved more compared to younger patients. Finally, placebo response plateaued by week 4 of treatment, and, at week 8, social anxiety disorder trials had lower placebo response compared to other anxiety disorders. CONCLUSIONS Benzodiazepines show early improvement compared to SSRIs and SNRIs. However, by week 8, all treatments yield similar results. Patient characteristics influence the improvement trajectory and magnitude, suggesting potential for personalized medication selection.
Collapse
Affiliation(s)
- Eric M Mendez
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey A Mills
- Department of Economics, Lindner College of Business, University of Cincinnati, Cincinnati, OH, USA
| | - Vikram Suresh
- Department of Economics, Lindner College of Business, University of Cincinnati, Cincinnati, OH, USA
| | - Julia N Stimpfl
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Divisions of Child & Adolescent Psychiatry and Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Li R, Shen F, Sun X, Zou T, Li L, Wang X, Deng C, Duan X, He Z, Yang M, Li Z, Chen H. Dissociable salience and default mode network modulation in generalized anxiety disorder: a connectome-wide association study. Cereb Cortex 2023; 33:6354-6365. [PMID: 36627243 DOI: 10.1093/cercor/bhac509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder experiencing psychological and somatic symptoms. Here, we explored the link between the individual variation in functional connectome and anxiety symptoms, especially psychological and somatic dimensions, which remains unknown. In a sample of 118 GAD patients and matched 85 healthy controls (HCs), we used multivariate distance-based matrix regression to examine the relationship between resting-state functional connectivity (FC) and the severity of anxiety. We identified multiple hub regions belonging to salience network (SN) and default mode network (DMN) where dysconnectivity associated with anxiety symptoms (P < 0.05, false discovery rate [FDR]-corrected). Follow-up analyses revealed that patient's psychological anxiety was dominated by the hyper-connectivity within DMN, whereas the somatic anxiety could be modulated by hyper-connectivity within SN and DMN. Moreover, hypo-connectivity between SN and DMN were related to both anxiety dimensions. Furthermore, GAD patients showed significant network-level FC changes compared with HCs (P < 0.01, FDR-corrected). Finally, we found the connectivity of DMN could predict the individual psychological symptom in an independent GAD sample. Together, our work emphasizes the potential dissociable roles of SN and DMN in the pathophysiology of GAD's anxiety symptoms, which may be crucial in providing a promising neuroimaging biomarker for novel personalized treatment strategies.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xiyue Sun
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| |
Collapse
|
3
|
Wei Y, Han S, Chen J, Wang C, Wang W, Li H, Song X, Xue K, Zhang Y, Cheng J. Abnormal interhemispheric and intrahemispheric functional connectivity dynamics in drug-naïve first-episode schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2022; 43:4347-4358. [PMID: 35611547 PMCID: PMC9435010 DOI: 10.1002/hbm.25958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous studies indicate altered static local and long‐range functional connectivity of multiple brain regions in schizophrenia patients with auditory verbal hallucinations (AVHs). However, the temporal dynamics of interhemispheric and intrahemispheric functional connectivity patterns remain unknown in schizophrenia patients with AVHs. We analyzed resting‐state functional magnetic resonance imaging data for drug‐naïve first‐episode schizophrenia patients, 50 with AVHs and 50 without AVH (NAVH), and 50 age‐ and sex‐matched healthy controls. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral parts, and sliding‐window analysis was used to calculate voxel‐wise interhemispheric and intrahemispheric dynamic functional connectivity density (dFCD). Finally, the correlation analysis was performed between abnormal dFCD variance and clinical measures in the AVH and NAVH groups. Compared with the NAVH group and healthy controls, the AVH group showed weaker interhemispheric dFCD variability in the left middle temporal gyrus (p < .01; p < .001), as well as stronger interhemispheric dFCD variability in the right thalamus (p < .001; p < .001) and right inferior temporal gyrus (p < .01; p < .001) and stronger intrahemispheric dFCD variability in the left inferior frontal gyrus (p < .001; p < .01). Moreover, abnormal contralateral dFCD variability of the left middle temporal gyrus correlated with the severity of AVHs in the AVH group (r = −.319, p = .024). The findings demonstrate that abnormal temporal variability of interhemispheric and intrahemispheric dFCD in schizophrenia patients with AVHs mainly focus on the temporal and frontal cortices and thalamus that are pivotal components of auditory and language pathways.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Acute neurofunctional effects of escitalopram during emotional processing in pediatric anxiety: a double-blind, placebo-controlled trial. Neuropsychopharmacology 2022; 47:1081-1087. [PMID: 34580419 PMCID: PMC8938471 DOI: 10.1038/s41386-021-01186-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Anxiety disorders are the most common mental disorders in adolescents. However, only 50% of pediatric patients with anxiety disorders respond to the first-line pharmacologic treatments-selective serotonin reuptake inhibitors (SSRIs). Thus, identifying the neurofunctional targets of SSRIs and finding pretreatment or early-treatment neurofunctional markers of SSRI treatment response in this population is clinically important. We acquired pretreatment and early-treatment (2 weeks into treatment) functional magnetic resonance imaging during a continuous processing task with emotional and neutral distractors in adolescents with generalized anxiety disorder (GAD, N = 36) randomized to 8 weeks of double-blind escitalopram or placebo. Generalized psychophysiological interaction analysis was conducted to examine the functional connectivity of the amygdala while patients viewed emotional pictures. Full-factorial analysis was used to investigate the treatment effect of escitalopram on amygdala connectivity. Correlation analyses were performed to explore whether pretreatment and early (week 2) treatment-related connectivity were associated with treatment response (improvement in anxiety) at week 8. Compared to placebo, escitalopram enhanced emotional processing speed and enhanced negative right amygdala-bilateral ventromedial prefrontal cortex (vmPFC) and positive left amygdala-right angular gyrus connectivity during emotion processing. Baseline amygdala-vmPFC connectivity and escitalopram-induced increased amygdala-angular gyrus connectivity at week 2 predicted the magnitude of subsequent improvement in anxiety symptoms. These findings suggest that amygdala connectivity to hubs of the default mode network represents a target of acute SSRI treatment. Furthermore, pretreatment and early-treatment amygdala connectivity could serve as biomarkers of SSRI treatment response in adolescents with GAD. The trial registration for the study is ClinicalTrials.gov Identifier: NCT02818751.
Collapse
|