1
|
Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular Imaging of Apoptosis: The Case of Caspase-3 Radiotracers. Int J Mol Sci 2021; 22:ijms22083948. [PMID: 33920463 PMCID: PMC8069194 DOI: 10.3390/ijms22083948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials.
Collapse
Affiliation(s)
- Lucas Beroske
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
2
|
Murray D, Mirzayans R. Cellular Responses to Platinum-Based Anticancer Drugs and UVC: Role of p53 and Implications for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21165766. [PMID: 32796711 PMCID: PMC7461110 DOI: 10.3390/ijms21165766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy is intended to induce cancer cell death through apoptosis and other avenues. Unfortunately, as discussed in this article, moderate doses of genotoxic drugs such as cisplatin typical of those achieved in the clinic often invoke a cytostatic/dormancy rather than cytotoxic/apoptosis response in solid tumour-derived cell lines. This is commonly manifested by an extended apoptotic threshold, with extensive apoptosis only being seen after very high/supralethal doses of such agents. The dormancy response can be associated with senescence-like features, polyploidy and/or multinucleation, depending in part on the p53 status of the cells. In most solid tumour-derived cells, dormancy represents a long-term survival mechanism, ultimately contributing to disease recurrence. This review highlights the nonlinearity of key aspects of the molecular and cellular responses to bulky DNA lesions in human cells treated with chemotherapeutic drugs (e.g., cisplatin) or ultraviolet light-C (a widely used tool for unraveling details of the DNA damage-response) as a function of the level of genotoxic stress. Such data highlight the growing realization that targeting dormant cancer cells, which frequently emerge following conventional anticancer treatments, may represent a novel strategy to prevent or, at least, significantly suppress cancer recurrence.
Collapse
|
3
|
Mudd SR, Comley RA, Bergstrom M, Holen KD, Luo Y, Carme S, Fox GB, Martarello L, Beaver JD. Molecular imaging in oncology drug development. Drug Discov Today 2017; 22:140-147. [DOI: 10.1016/j.drudis.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023]
|
4
|
Radiopharmacological evaluation of (18)F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis. Nucl Med Biol 2015. [PMID: 26205076 DOI: 10.1016/j.nucmedbio.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Radiolabeled phosphatidylserine (PS)-binding peptides represent an innovative strategy for molecular imaging of apoptosis with positron emission tomography (PET). The goal of this study was the radiopharmacological evaluation of radiolabeled peptides for their binding to PS on apoptotic cancer cells, involving metabolic stability, cellular uptake, biodistribution, and dynamic PET imaging experiments. METHODS Binding of peptides LIKKPF, PGDLSR, FBz-LIKKPF, FBz-PGDLSR, FBAM-CLIKKPF and FBAM-CPGDLSR to PS was analyzed in a newly developed radiometric binding assay using (64)Cu-labeled wild-type annexin-V as radiotracer. Radiolabeling of most potent peptides with fluorine-18 was carried out with thiol-selective prosthetic group [(18)F]FBAM to give [(18)F]FBAM-CLIKKPF and [(18)F]FBAM-CPGDLSR. [(18)F]FBAM-labeled peptides were studied in camptothecin-induced apoptotic human T lymphocyte Jurkat cells, and in a murine EL4 tumor model of apoptosis using dynamic PET imaging and biodistribution. RESULTS Peptides LIKKPF and PGDLSR inhibited binding of (64)Cu-labeled annexin-V to immobilized PS in the millimolar range (IC50 10-15 mM) compared to annexin-V (45 nM). Introduction of FBAM prosthetic group slightly increased inhibitory potencies (FBAM-CLIKKPF: IC50 = 1 mM; FBAM-CPGDLSR: IC50 = 6 mM). Radiolabeling succeeded in good radiochemical yields of 50-54% using a chemoselective alkylation reaction of peptides CLIKKPF and CPGDLSR with [(18)F]FBAM. In vivo metabolic stability studies in mice revealed 40-60% of intact peptides at 5 min p.i. decreasing to 25% for [(18)F]FBAM-CLIKKPF and less than 5% for [(18)F]FBAM-CPGDLSR at 15 min p.i.. Cell binding of [(18)F]FBAM-CLIKKPF in drug-treated Jurkat cells was significantly higher compared to untreated cells, but this was not observed for [(18)F]FBAM-CPGDLSR. Dynamic PET imaging experiments showed that baseline uptake of [(18)F]FBAM-CLIKKPF in EL4 tumors was higher (SUV(5min) 0.46, SUV(60min) 0.13) compared to [(18)F]FBAM-CPGDLSR (SUV(5min) 0.16, SUV(60min) 0.10). Drug-treated EL4 tumors did not show an increased uptake for both [(18)F]FBAM-labeled peptides. CONCLUSION Although both (18)F-labeled peptides [(18)F]FBAM-CLIKKPF and [(18)F]FBAM-CPGDLSR showed higher binding to apoptotic Jurkat cells in vitro, their in vivo uptake profiles were not different in apoptotic EL4 tumors. This may explained by the relatively low potency of both compounds to compete with binding of (64)Cu-labeled annexin-V to PS. Overall the novel competitive radiometric PS-binding assay with (64)Cu-labeled annexin-V represents a versatile and very robust screening platform to analyze potential PS-binding compounds in vitro. Further studies will be necessary to evaluate alternative peptide structures toward their use as PET radiotracers imaging apoptosis in vivo. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Development of peptide-based radiotracers for imaging apoptosis in vivo remains a significant challenge.
Collapse
|
5
|
Wang MW, Wang F, Zheng YJ, Zhang YJ, Zhang YP, Zhao Q, Shen CKF, Wang Y, Sun SH. An in vivo molecular imaging probe (18)F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation. Apoptosis 2013; 18:238-47. [PMID: 23238992 DOI: 10.1007/s10495-012-0788-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an increasing need to develop non-invasive molecular imaging strategies for visualizing and quantifying apoptosis status of diseases (especially for cancer) for diagnosis and monitoring treatment response. Since externalization of phosphatidylserine (PS) is one of the early molecular events during apoptosis, Annexin B1 (AnxB1), a member of Annexins family with high affinity toward the head group of PS, could be a potential positron emission tomography (PET) imaging probe for imaging cell death process after labeled by positron-emitting nuclides, such as (18)F. In the present study, we investigated a novel PET probe, (18)F-labeled Annexin B1 ((18)F-AnxB1), for apoptosis imaging. (18)F-AnxB1 was prepared reliably by conjugating AnxB1 with a (18)F-tag, N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB), in a radiolabeling yield of about 20 % within 40 min. The in vitro binding of (18)F-AnxB1 with apoptotic cells induced by anti-Fas antibody showed twofold increase compared to those without treatment, confirmed by flow cytometric analysis with AnxV-FITC/PI staining. Stability tests demonstrated (18)F-AnxB1 was rather stable in vitro and in vivo without degradation. The serial (18)F-AnxB1 PET/CT scans in healthy rats outlined its biodistribution and pharmacokinetics, indicating a rapid renal clearance and predominant accumulation into kidney and bladder at 2 h p.i. (18)F-AnxB1 PET/CT imaging was successfully applied to visualize in vivo apoptosis sites in tumor induced by chemotherapy and in kidney simulated by ischemia-reperfusion injury. The high-contrast images were obtained at 2 h p.i. to delineate apoptotic tumor. Apoptotic region could be still identified by (18)F-AnxB1 PET 4 h p.i., despite the high probe retention in kidneys. In summary, we have developed (18)F-AnxB1 as a PS-specific PET probe for the apoptosis detection and quantification which could have broad applications from disease diagnosis to treatment monitoring, especially in the cases of cancer.
Collapse
Affiliation(s)
- Ming-Wei Wang
- PET Center, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci 2013; 14:15931-58. [PMID: 23912235 PMCID: PMC3759894 DOI: 10.3390/ijms140815931] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022] Open
Abstract
Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment.
Collapse
|
7
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
8
|
Kapty J, Banman S, Goping IS, Mercer JR. Evaluation of phosphatidylserine-binding peptides targeting apoptotic cells. ACTA ACUST UNITED AC 2012; 17:1293-301. [PMID: 22811476 DOI: 10.1177/1087057112453313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inhibition or dysregulation of apoptosis plays an intimate role in the initiation and progression of cancer by confounding normal tissue homeostasis. We currently do not have a clinical method to assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis because it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study, four peptides were evaluated for PS-binding characteristics using a plate-based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. This work also describes two screening techniques to enable researchers to identify and optimize compounds that bind to PS. The results of our study indicate that all four peptides bind to PS and are specific to apoptotic cells. Two of the peptides in particular that have an additional cysteine residue are good potential candidates for development into imaging probes because they bind to PS with high affinity and specificity and they can be easily radiolabelled with (18)F.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | | | | | | |
Collapse
|
9
|
Current world literature. Curr Opin Urol 2012; 22:336-45. [PMID: 22677776 DOI: 10.1097/mou.0b013e3283551cbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Miller J, Doss M, McQuillen R, Shaller CC, Tolner B, Yu JQ, Chester K, Robinson MK. Impact of expression system on the function of the C6.5 diabody PET radiotracer. Tumour Biol 2012; 33:617-27. [PMID: 22383295 DOI: 10.1007/s13277-012-0361-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
The ability of engineered antibodies to rapidly and selectively target tumors that express their target antigen makes them well suited for use as radioimaging tracers. The combination of molecular size and bivalent nature makes diabody molecules a particularly promising structure for use as radiotracers for diagnostic imaging. Previous data have demonstrated that the anti-HER2 C6.5 diabody (C6.5db) is an effective radiotracer in preclinical models of HER2-positive cancer. The aim of this study was to evaluate the impact on radiotracer performance, associated with expressing the C6.5db in the Pichia pastoris (P-C6.5db) system as compared to Escherichia coli (E. C6.5db). Glycosylation of P-C6.5db led to faster blood clearance and lower overall tumor uptake than seen with E. coli-produced C6.5db. However, P-C6.5db achieved high tumor/background ratios that are critical for effective imaging. Dosimetry measurements determined in this study for both (124)I-P-C6.5db and (124)I-E-C6.5db suggest that they are equivalent to other radiotracers currently being administered to patients.
Collapse
Affiliation(s)
- Joshua Miller
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kapty J, Kniess T, Wuest F, Mercer JR. Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Appl Radiat Isot 2011; 69:1218-25. [PMID: 21571539 DOI: 10.1016/j.apradiso.2011.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 11/18/2022]
Abstract
The widely used (18)F-prosthetic group N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) and the recently developed N-[6-(4-[(18)F]fluorobenzylidene)aminooxyhexyl]maleimide ([(18)F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reactions conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [(18)F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [(18)F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [(18)F]FBAM. Results indicate that for the peptides in this study, [(18)F]FBAM is a more useful prosthetic group compared to [(18)F]SFB due to its excellent chemoselectivity and high radiochemical yield.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
12
|
Levy JMM, Thorburn A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 2011; 131:130-41. [PMID: 21440002 DOI: 10.1016/j.pharmthera.2011.03.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic process that turns over long-lived proteins and organelles and contributes to cell and organism survival in times of stress. Current cancer therapies including chemotherapy and radiation are known to induce autophagy within tumor cells. This is therefore an attractive process to target during cancer therapy as there are safe, clinically available drugs known to both inhibit and stimulate autophagy. However, there are conflicting positive and negative effects of autophagy and no current consensus on how to manipulate autophagy to improve clinical outcomes. Careful and rigorous evaluation of autophagy with a focus on how to translate laboratory findings into relevant clinical therapies remains an important aspect of improving clinical outcomes in patients with malignant disease.
Collapse
Affiliation(s)
- Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado, 12801 E 17th Ave, RC-1 South, Rm 6400D, Mail Stop 8303, Aurora, CO 80045, USA
| | | |
Collapse
|