1
|
Aranciaga N, Ross AB, Morton JD, McDonald R, Gathercole JL, Berg DK. Metabolomic evolution of the postpartum dairy cow uterus. Mol Reprod Dev 2023; 90:835-848. [PMID: 37632839 DOI: 10.1002/mrd.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023]
Abstract
High rates of early pregnancy loss are a critical issue in dairy herds, particularly in seasonal, grazing systems. Components of the uterine luminal fluid (ULF), on which the early embryo depends for sustenance and growth, partly determine early pregnancy losses. Here, changes in ULF from early to mid-postpartum in crossbred dairy cows were explored, linking them with divergent embryo development. For this, the uteri of 87 cows at Day 7 of pregnancy at first and third estrus postpartum were flushed to collect ULF. Eighteen metabolites (chiefly organic acids and sugars) significantly varied in abundance across postpartum, indicating a molecular signature of physiological recovery consistent of the upregulation of pyrimidine metabolism and glycerophospholipid metabolism, and downregulation of pentose phosphate and taurine metabolism pathways. Joint pathway analysis of metabolomics data and a previously generated proteomics data set on the same ULF samples suggests key links between postpartum recovery and subsequent successful embryo development. These include upregulation of VEGFA and downregulation of metabolism, NRF2, T-cell receptor, which appear to improve the ULF's capacity of sustaining normal embryo development, and a putative osmo-protectant role of beta-alanine. These relationships should be further investigated to develop tools to detect and reduce early pregnancy loss in dairy cows.
Collapse
Affiliation(s)
- Nicolas Aranciaga
- Proteins and Metabolites Team, AgResearch, Christchurch, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Animal Biotechnology Team, AgResearch, Hamilton, New Zealand
| | - Alastair B Ross
- Proteins and Metabolites Team, AgResearch, Christchurch, New Zealand
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Robin McDonald
- Animal Biotechnology Team, AgResearch, Hamilton, New Zealand
| | | | - Debra K Berg
- Animal Biotechnology Team, AgResearch, Hamilton, New Zealand
| |
Collapse
|
2
|
Gimeno I, Salvetti P, Carrocera S, Gatien J, García-Manrique P, López-Hidalgo C, Valledor L, Gómez E. Biomarker metabolite mating of viable frozen-thawed in vitro-produced bovine embryos with pregnancy-competent recipients leads to improved birth rates. J Dairy Sci 2023; 106:6515-6538. [PMID: 37268566 DOI: 10.3168/jds.2022-23082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 06/04/2023]
Abstract
Selection of competent recipients before embryo transfer (ET) is indispensable for improving pregnancy and birth rates in cattle. However, pregnancy prediction can fail when the competence of the embryo is ignored. We hypothesized that the pregnancy potential of biomarkers could improve with information on embryonic competence. In vitro-produced embryos cultured singly for 24 h (from d 6 to 7) were transferred to d 7 synchronized recipients as fresh or after freezing and thawing. Recipient blood was collected on d 0 (estrus; n = 108) and d 7 (4-6 h before ET; n = 107) and plasma was analyzed by nuclear magnetic resonance (1H+NMR). Spent embryo culture medium (CM) was collected and analyzed by ultra-high-performance liquid chromatography tandem mass spectrometry in a subset of n = 70 samples. Concentrations of metabolites quantified in plasma (n = 35) were statistically analyzed as a function of pregnancy diagnosed on d 40, d 62 and birth. Univariate analysis with plasma metabolites consisted of a block study with controllable fixed factors (i.e., embryo cryopreservation, recipient breed, and day of blood collection; Wilcoxon test and t-test). Metabolite concentrations in recipients and embryos were independently analyzed by iterations that reclassified embryos or recipients using the support vector machine. Iterations identified some competent embryos, but mostly competent recipients that had a pregnancy incompetent partner embryo. Misclassified recipients that could be classified as competent were reanalyzed in a new iteration to improve the predictive model. After subsequent iterations, the predictive potential of recipient biomarkers was recalculated. On d 0, creatine, acetone and l-phenylalanine were the most relevant biomarkers at d 40, d 62, and birth, and on d 7, l-glutamine, l-lysine, and ornithine. Creatine was the most representative biomarker within blocks (n = 20), with a uniform distribution over pregnancy endpoints and type of embryos. Biomarkers showed higher abundance on d 7 than d 0, were more predictive for d 40 and d 62 than at birth, and the pregnancy predictive ability was lower with frozen-thawed (F-T) embryos. Six metabolic pathways differed between d 40 pregnant recipients for fresh and F-T embryos. Within F-T embryos, more recipients were misclassified, probably due to pregnancy losses, but were accurately identified when combined with embryonic metabolite signals. After recalculation, 12 biomarkers increased receiver operator characteristic-area under the curve (>0.65) at birth, highlighting creatine (receiver operator characteristic-area under the curve = 0.851), and 5 new biomarkers were identified. Combining metabolic information of recipient and embryos improves the confidence and accuracy of single biomarkers.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Julie Gatien
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain.
| |
Collapse
|
3
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window†. Biol Reprod 2020; 100:672-685. [PMID: 30388203 DOI: 10.1093/biolre/ioy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Pregnancy establishment in cattle is contingent on conceptus elongation-a fundamental developmental event coinciding with the time during which most pregnancies fail. Elongation in vivo is directly driven by uterine secretions, indirectly influenced by systemic progesterone concentrations, and has yet to be recapitulated in vitro. To better understand the microenvironment evolved to facilitate this phenomenon, the amino acid and carbohydrate composition of uterine fluid was interrogated using high-throughput metabolomics on days 12, 13, and 14 of the estrous cycle from heifers with normal and high circulating progesterone. A total of 99 biochemicals (79 amino acids and 20 carbohydrates) were consistently identified, of which 31 showed a day by progesterone interaction. Fructose and mannitol/sorbitol did not exhibit a day by progesterone interaction, but displayed the greatest individual fluctuations (P ≤ 0.05) with respective fold increases of 18.39 and 28.53 in high vs normal progesterone heifers on day 12, and increases by 10.70-fold and 14.85-fold in the uterine fluid of normal progesterone animals on day 14 vs day 12. Moreover, enrichment analyses revealed that the phenylalanine, glutathione, polyamine, and arginine metabolic pathways were among the most affected by day and progesterone. In conclusion, progesterone had a largely stabilizing effect on amino acid flux, and identified biochemicals of likely importance to conceptus elongation initiation include arginine, fructose, glutamate, and mannitol/sorbitol.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thiago Martins
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA.,Department of Animal Reproduction, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Gómez E, Salvetti P, Gatien J, Carrocera S, Martín-González D, Muñoz M. Blood Plasma Metabolomics Predicts Pregnancy in Holstein Cattle Transferred with Fresh and Vitrified/Warmed Embryos Produced in Vitro. J Proteome Res 2020; 19:1169-1182. [PMID: 31975599 DOI: 10.1021/acs.jproteome.9b00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolomics may identify biomarkers in blood that differentiate pregnant from open embryo recipients. Fresh and vitrified/warmed, in vitro-produced embryos were transferred to Holstein recipients (discovery group). Recipient blood plasma collected on Day-0 (estrus) and Day-7 (before embryo transfer) were analyzed by nuclear magnetic resonance (N = 36 metabolites quantified). Metabolites whose concentrations differed between open and pregnant recipients were analyzed [(P < 0.05); false discovery rate (FDR) (P < 0.05)]. Biomarkers were identified in Day-7 plasma (receiver operator characteristic-area under curve (ROC-AUC) > 0.650; t-test P < 0.05; random forests, mean decrease accuracy) and cross-validated in independent Holstein, beef, and crossbred recipients (overall classification accuracy -OCA-; P < 0.05). Recipients with fresh embryos showed N = 6 biomarkers consistently on Day-40, Day-62, and at birth. Recipients with vitrified embryos showed N = 5 biomarkers on Day-40 and Day-62 but only one biomarker at birth. The most predictive biomarkers identified at birth within fresh embryos were oxoglutaric acid (ROC-AUC = 0.709; OCA = 0.812) and ornithine (ROC-AUC = 0.731; OCA = 0.727), while l-glycine was identified in vitrified embryos (ROC-AUC = 0.796; OCA = 0.667) together with other predictive biomarkers not identified at birth (Day-62: l-glutamine ROC-AUC = 0.757; OCA = 0.767) and l-lysine (Day-62: ROC-AUC = 0.680; OCA = 0.767). Pathway enrichment analysis distinguished between pregnant recipients for fresh (enriched energy oxidative metabolism from fat) and vitrified (lower lipid metabolism) embryos. Metabolomics can select individuals that will become pregnant in a defined cycle.
Collapse
Affiliation(s)
- Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ALLICE, Experimental Facilities, Le Perroi, 37380 Nouzilly, France
| | - Julie Gatien
- ALLICE, Experimental Facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | | | - Marta Muñoz
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
6
|
Yang Y, Wang L, Chen C, Qi H, Baker PN, Liu X, Zhang H, Han TL. Metabolic Changes of Maternal Uterine Fluid, Uterus, and Plasma during the Peri-implantation Period of Early Pregnancy in Mice. Reprod Sci 2020; 27:488-502. [PMID: 32046443 DOI: 10.1007/s43032-019-00040-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Embryo implantation is a complex process which involves biochemical and physiological interactions between an implantation-competent blastocyst and a receptive uterus. However, the exact biochemical changes of uterine fluid, uterus, and plasma during peri-implantation remain unclear. This study aims to characterize the biochemical and metabolic changes that occur during the peri-implantation period of early pregnancy, using mice as an animal model. Gas chromatography-mass spectrometry was used to analyze the metabolite profiles of the uterus, uterine fluid, and maternal plasma at pre-implantation and implantation. The multivariate analyses, ANOVA and Tukey's HSD test, were applied to detect significant changes in metabolites and metabolic pathways. The metabolic networks were reconstructed in silico based on the identified metabolites and KEGG metabolic framework. Between pre-implantation day 1 and day 4, dramatic metabolic changes were observed in the uterine fluid that could be important for blastocyst development and protection against the harsh uterine environment. Palmitoleic acid, fumaric acid, and glutaric acid changed levels at day 4 in the uterus, suggesting that they may be associated with endometrial receptivity. Both the uterus and maternal plasma showed profound changes in cellular metabolism at the early implantation period, including upregulation of branched-chain amino acids and intermediates of one-carbon metabolism, an upregulation of glyoxylate and dicarboxylate metabolism, and downregulation of aerobic respiration; all of which could be involved in the regulation of the maternal-fetal interface, alternative nutrient utilization, and energy preservation for implantation as well as later placentation and fetal development to ensure successful embryo implantation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Longqiong Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, UK
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.
| | - Ting-Li Han
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 2019; 9:7716. [PMID: 31118434 PMCID: PMC6531537 DOI: 10.1038/s41598-019-44040-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Conceptus elongation coincides with one of the periods of greatest pregnancy loss in cattle and is characterized by rapid trophectoderm expansion, commencing ~ Day 13 of pregnancy, i.e. before maternal pregnancy recognition. The process has yet to be recapitulated in vitro and does not occur in the absence of uterine gland secretions in vivo. Moreover, conceptus elongation rates are positively correlated to systemic progesterone in maternal circulation. It is, therefore, a maternally-driven and progesterone-correlated developmental phenomenon. This study aimed to comprehensively characterize the biochemical composition of the uterine luminal fluid on Days 12-14 - the elongation-initiation window - in heifers with normal vs. high progesterone, to identify molecules potentially involved in conceptus elongation initiation. Specifically, nucleotide, vitamin, cofactor, xenobiotic, peptide, and energy metabolite profiles of uterine luminal fluid were examined. A total of 59 metabolites were identified, of which 6 and 3 displayed a respective progesterone and day effect, whereas 16 exhibited a day by progesterone interaction, of which 8 were nucleotide metabolites. Corresponding pathway enrichment analysis revealed that pyridoxal, ascorbate, tricarboxylic acid, purine, and pyrimidine metabolism are of likely importance to to conceptus elongation initiation. Moreover, progesterone reduced total metabolite abundance on Day 12 and may alter the uterine microbiome.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Forde N, Simintiras CA, Sturmey RG, Graf A, Wolf E, Blum H, Lonergan P. Effect of lactation on conceptus-maternal interactions at the initiation of implantation in cattle: I. Effects on the conceptus transcriptome and amino acid composition of the uterine luminal fluid. Biol Reprod 2019; 97:798-809. [PMID: 29088315 DOI: 10.1093/biolre/iox135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022] Open
Abstract
Approximately 65-75 days postpartum (dpp), the estrous cycles of nonlactating (dried off immediately postpartum: n = 12) and lactating (n = 13) Holstein Friesian cows were synchronized and on day 7 a single blastocyst derived from superovulated nulliparous Holstein Friesian heifers was transferred to each cow. A control group of nulliparous heifers (n = 8) were synchronized, inseminated to a standing heat, and slaughtered on the same day as nonlactating and lactating recipients (day 19; estrus = day 0). The uterine horn ipsilateral to the corpus luteum was flushed with 10 ml phosphate-buffered saline and the conceptus, and uterine luminal fluid (ULF) was snap-frozen in liquid nitrogen. Gene expression analysis of the conceptus was performed by RNA sequencing, while amino acid composition of ULF was determined by high-performance liquid chromatography. No differentially expressed genes (DEGs) were observed between conceptuses recovered from nonlactating and lactating cows. Eight DEGs were identified between conceptuses recovered from nonlactating cows and heifers. A total of 269 DEGs (100 up- and 169 downregulated) were identified between conceptuses recovered from lactating cows compared to heifers. Alanine, glycine, serine, threonine, arginine, leucine, and valine were significantly lower in abundance in ULF recovered from heifers compared to nonlactating or lactating cows. This study demonstrates that the environment in which the embryo develops post the blastocyst stage can have an effect on the conceptus transcriptome and amino acid composition of the ULF but this was mainly observed between the two extreme groups in terms of metabolic status (nulliparous heifers vs postpartum lactating cows).
Collapse
Affiliation(s)
- Niamh Forde
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.,School of Agriculture and Food Science, University College Dublin, Ireland
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
9
|
Gómez E, Sánchez-Calabuig MJ, Martin D, Carrocera S, Murillo A, Correia-Alvarez E, Herrero P, Canela N, Gutiérrez-Adán A, Ulbrich S, Muñoz M. In vitro cultured bovine endometrial cells recognize embryonic sex. Theriogenology 2017; 108:176-184. [PMID: 29223655 DOI: 10.1016/j.theriogenology.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
Endometrial cell co-culture (ECC) with single embryo may reflect endometrium responses in vivo. Bovine Day-6 in vitro-produced morulae were cultured until Day-8 in modified synthetic oviductal fluid (mSOF), or on the epithelial side of ECC. Expression of epithelial- and stromal-cell transcripts was analyzed by RT-PCR in ECC with one male (ME) or female embryo (FE). Concentrations of ARTEMIN (ARTN) and total protein were determined in epithelial cell-conditioned medium. ECCs yielded embryos with more cells in the inner cell mass than embryos cultured in mSOF. Embryos altered transcript expression only in epithelial cells, not in stromal ones. Thus, ME induced larger reductions than FE and controls (i.e., no embryos cultured) in hexose transporter solute carrier family 2 member 1 (SLC2A1) and member 5 (SLC2A5), connective tissue growth factor (CTGF), artemin (ARTN), and interferon alpha and beta receptors subunit IFNAR1 and IFNAR2. FE reduced SLC2A1 and SLC2A5, and increased ARTN expression with respect to controls. ME tended to reduce total protein concentration (P < 0.082) in ECC-conditioned medium, while ARTN protein and gene expressions strongly correlated (R > 0.90; P < 0.05) in the group of ME or FE, but not in controls (without embryo). Isolated male and female embryos may differentially release signaling factors that induce sexually dimorphic responses in endometrial cells.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain.
| | - M J Sánchez-Calabuig
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - P Herrero
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - N Canela
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro, n°12, local 10, 28040 Madrid, Spain
| | - S Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
10
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
11
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
12
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
13
|
Sandra O, Constant F, Vitorino Carvalho A, Eozénou C, Valour D, Mauffré V, Hue I, Charpigny G. Maternal organism and embryo biosensoring: insights from ruminants. J Reprod Immunol 2015; 108:105-13. [PMID: 25617112 DOI: 10.1016/j.jri.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/01/2022]
Abstract
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France.
| | - Fabienne Constant
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Anais Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Caroline Eozénou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Damien Valour
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Vincent Mauffré
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Gilles Charpigny
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| |
Collapse
|
14
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
15
|
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 2014; 9:e100010. [PMID: 24960174 PMCID: PMC4069017 DOI: 10.1371/journal.pone.0100010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022] Open
Abstract
In cattle, conceptus-maternal interactions are critical for the establishment and maintenance of pregnancy. A major component of this early interaction involves the transport of nutrients and secretion of key molecules by uterine epithelial cells to help support conceptus development during the peri-implantation period of pregnancy. Objectives were to: 1) analyze temporal changes in the amino acid (AA) content of uterine luminal fluid (ULF) during the bovine estrous cycle; 2) understand conceptus-induced alterations in AA content; 3) determine expression of AA transporters in the endometrium and conceptus; and 4) determine how these transporters are modulated by (Progesterone) P4. Concentrations of aspartic acid, arginine, glutamine, histidine, lysine, isoleucine, leucine, phenylalanine and tyrosine decreased on Day 16 of the estrous cycle but increased on Day 19 in pregnant heifers (P<0.05). Glutamic acid only increased in pregnant heifers on Day 19 (P<0.001). Asparagine concentrations were greater in ULF of cyclic compared to pregnant heifers on Day 7 (P<0.05) while valine concentrations were higher in pregnant heifers on Day 16 (P<0.05). Temporal changes in expression of the cationic AA transporters SLC7A1 SLC7A4 and SLC7A6 occurred in the endometrium during the estrous cycle/early pregnancy coordinate with changes in conceptus expression of SLC7A4, SLC7A2 and SLC7A1 (P<0.05). Only one acidic AA transporter (SLC1A5) increased in the endometrium while conceptus expression of SLC1A4 increased (P<0.05). The neutral AA transporters SLC38A2 and SLC7A5 increased in the endometrium in a temporal manner while conceptus expression of SLC38A7, SLC43A2, SLC38A11 and SLC7A8 also increased (P<0.05). P4 modified the expression of SLC1A1, -1A4, -1A5, -38A2, -38A4, -38A7, -43A2, -6A14, -7A1, -7A5 and -7A7 in the endometrium. Results demonstrate that temporal changes in AA in the ULF reflect changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle, some of which are modified by P4.
Collapse
|
16
|
Hozyasz KK, Mostowska A, Wójcicki P, Lasota A, Wołkowicz A, Dunin-Wilczyńska I, Jagodziński PP. Association of common variants in PAH and LAT1 with non-syndromic cleft lip with or without cleft palate (NSCL/P) in the Polish population. Arch Oral Biol 2014; 59:363-9. [PMID: 24606907 DOI: 10.1016/j.archoralbio.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common structural malformation with a complex and multifactorial aetiology. Associations of abnormalities in phenylalanine metabolism and orofacial clefts have been suggested. METHODS Eight single nucleotide polymorphisms (SNPs) of genes encoding phenylalanine hydroxylase (PAH) and large neutral l-amino acid transporter type 1 (LAT1), as well as the PAH mutation that is most common in the Polish population (rs5030858; R408W), were investigated in 263 patients with NSCL/P and 270 matched controls using high resolution melting curve analysis (HRM). RESULTS We found that two polymorphic variants of PAH appear to be risk factors for NSCL/P. The odds ratio (OR) for individuals with the rs7485331 A allele (AC or AA) compared to CC homozygotes was 0.616 (95% confidence interval [CI]=0.437-0.868; p=0.005) and this association remains statistically significant after multiple testing correction. The PAH rs12425434, previously associated with schizophrenia, was borderline associated with orofacial clefts. Moreover, haplotype analysis of polymorphisms in the PAH gene revealed a 4-marker combination that was significantly associated with NSCL/P. The global p-value for a haplotype comprised of SNPs rs74385331, rs12425434, rs1722392, and the mutation rs5030858 was 0.032, but this association did not survive multiple testing correction. CONCLUSION This study suggests the involvement of the PAH gene in the aetiology of NSCL/P in the tested population. Further replication will be required in separate cohorts to confirm the consistency of the observed association.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland.
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Wójcicki
- University Clinic of Medical Academy, Wroclaw, Poland; Department of Plastic Surgery, Specialist Medical Center, Polanica Zdroj, Poland
| | - Agnieszka Lasota
- Department of Jaw Orthopaedics, Medical University of Lublin, Lublin, Poland
| | - Anna Wołkowicz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
17
|
Meier S, Mitchell M, Walker C, Roche J, Verkerk G. Amino acid concentrations in uterine fluid during early pregnancy differ in fertile and subfertile dairy cow strains. J Dairy Sci 2014; 97:1364-76. [DOI: 10.3168/jds.2013-6954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022]
|
18
|
Ulbrich SE, Wolf E, Bauersachs S. Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo - endometrium interactions in cattle. Reprod Fertil Dev 2013; 25:62-70. [DOI: 10.1071/rd12279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ongoing detailed investigations into embryo–maternal communication before implantation reveal that during early embryonic development a plethora of events are taking place. During the sexual cycle, remodelling and differentiation processes in the endometrium are controlled by ovarian hormones, mainly progesterone, to provide a suitable environment for establishment of pregnancy. In addition, embryonic signalling molecules initiate further sequences of events; of these molecules, prostaglandins are discussed herein as specifically important. Inadequate receptivity may impede preimplantation development and implantation, leading to embryonic losses. Because there are multiple factors affecting fertility, receptivity is difficult to comprehend. This review addresses different models and methods that are currently used and discusses their respective potentials and limitations in distinguishing key messages out of molecular twitter. Transcriptome, proteome and metabolome analyses generate comprehensive information and provide starting points for hypotheses, which need to be substantiated using further confirmatory methods. Appropriate in vivo and in vitro models are needed to disentangle the effects of participating factors in the embryo–maternal dialogue and to help distinguish associations from causalities. One interesting model is the study of somatic cell nuclear transfer embryos in normal recipient heifers. A multidisciplinary approach is needed to properly assess the importance of the uterine milieu for embryonic development and to use the large number of new findings to solve long-standing issues regarding fertility.
Collapse
|
19
|
Ulbrich SE, Groebner AE, Bauersachs S. Transcriptional profiling to address molecular determinants of endometrial receptivity--lessons from studies in livestock species. Methods 2012. [PMID: 23178633 DOI: 10.1016/j.ymeth.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|