1
|
Dirks RAM, van Mierlo G, Kerstens HHD, Bernardo AS, Kobolák J, Bock I, Maruotti J, Pedersen RA, Dinnyés A, Huynen MA, Jouneau A, Marks H. Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics Chromatin 2019; 12:14. [PMID: 30767785 PMCID: PMC6376749 DOI: 10.1186/s13072-019-0259-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Hindrik H D Kerstens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.,Mill Hill Laboratory, The Ridgeway, The Francis Crick Institute, London, NW7 1AA, UK
| | | | | | - Julien Maruotti
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.,Phenocell SAS, Evry, France
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Eslami-Arshaghi T, Vakilian S, Seyedjafari E, Ardeshirylajimi A, Soleimani M, Salehi M. Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds. In Vitro Cell Dev Biol Anim 2017; 53:371-380. [PMID: 28039620 DOI: 10.1007/s11626-016-0113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-L-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.
Collapse
Affiliation(s)
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Stem Cells Technology Research Center, Tehran, Iran.,Department of Tissue Engeneering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity MK, Dinnyes A. Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram 2013; 15:443-58. [PMID: 24020697 DOI: 10.1089/cell.2012.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Embryonic stem cells (ESCs) have the ability to form aggregates, which are called embryoid bodies (EBs). EBs mimic early embryonic development and are commonly produced for cardiomyogenesis. Here, we describe a method of EB formation in hydrodynamic conditions using a slow-turning lateral vessel (STLV) bioreactor and the subsequent differentiation of EBs into cardiomyocytes. EBs formed in the STLV were compared with conventional techniques, such as hanging drop (HD) or static suspension cell culture (SSC), for homogeneity of EB size, shape, proliferation, apoptosis, and in vitro cardiac differentiation. After 3 days of culture, a four-fold improvement in the yield of EB formation/mL, a six-fold enhancement in total yield of EB/mL, and a nearly 10-fold reduction of cells that failed to incorporate into EBs were achieved in STLV versus SSC. During cardiac differentiation, a 1.5- to 4.2-fold increase in the area of cardiac troponin T (cTnT) per single EB in STLV versus SSC and HD was achieved. These results demonstrate that the STLV method improves the quality and quantity of ES cells to form EBs and enhances the efficiency of cardiac differentiation. We have demonstrated that the mechanical method of cell differentiation creates different microenvironments for the cells and thus influences their lineage commitments, even when genetic origin and the culture medium are the same. Ascorbic acid (ASC) improved further cardiac commitment in differentiation assays. Hence, this culture system is suitable for the production of large numbers of cells for clinical cell replacement therapies and industrial drug testing applications.
Collapse
|
4
|
Fröhlich T, Kösters M, Graf A, Wolf E, Kobolak J, Brochard V, Dinnyés A, Jouneau A, Arnold GJ. iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. J Proteomics 2013; 90:38-51. [DOI: 10.1016/j.jprot.2013.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 12/26/2022]
|