1
|
Aguila L, Sampaio RV, Therrien J, Nociti RP, Labrecque R, Tremblay A, Marras G, Blondin P, Smith LC. Replacing sperm with genotyped haploid androgenetic blastomeres to generate cattle with predetermined paternal genomes†. Biol Reprod 2024; 111:1311-1325. [PMID: 39303105 DOI: 10.1093/biolre/ioae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Although meiosis plays an essential role for the survival of species in natural selection, the genetic diversity resulting from sexual reproduction impedes human-driven strategies to transmit the most suitable genomes for genetic improvement, forcing breeders to select diploid genomes generated after fertilization, that is, after the encounter of sperm and oocytes carrying unknown genomes. To determine whether genomic assessment could be used before fertilization, some androgenetic haploid morula-stage bovine embryos derived from individual sperm were biopsied for genomic evaluation and others used to reconstruct "semi-cloned" (SC) diploid zygotes by the intracytoplasmic injection into parthenogenetically activated oocytes, and the resulting embryos were transferred to surrogate females to obtain gestations. Compared to controls, in vitro development to the blastocyst stage was lower and fewer surrogates became pregnant from the transfer of SC embryos. However, fetometric measurements of organs and placental membranes of all SC conceptuses were similar to controls, suggesting a normal post-implantation development. Moreover, transcript amounts of imprinted genes IGF2, IGF2R, PHLDA2, SNRPN, and KCNQ1OT1 and methylation pattern of the KCNQ1 DMR were unaltered in SC conceptuses. Overall, this study shows that sperm can be replaced by genotyped haploid embryonic-derived cells to produce bovine embryos carrying a predetermined paternal genome and viable first trimester fetuses after transfer to female recipients. SUMMARY SENTENCE Haploid morula-stage embryonic cells derived from a single sperm can be genotyped and injected into activated oocytes to reconstruct diploid zygotes that develop both in vitro into blastocysts and in vivo into viable post-implantation bovine conceptuses with predetermined paternal genomes.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | | | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
2
|
Yang YT, Yan B, Guo LN, Liu M, Li YH, Shao ZY, Diao H, Liu SY, Yu HG. Scriptaid is a prospective agent for improving human asthenozoospermic sample quality and fertilization rate in vitro. Asian J Androl 2024; 26:490-499. [PMID: 38856299 PMCID: PMC11449406 DOI: 10.4103/aja202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/04/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility is a global issue caused by poor sperm quality, particularly motility. Enhancement of the sperm quality may improve the fertilization rate in assisted reproductive technology (ART) treatment. Scriptaid, with a novel human sperm motility-stimulating activity, has been investigated as a prospective agent for improving sperm quality and fertilization rate in ART. We evaluated the effects of Scriptaid on asthenozoospermic (AZS) semen, including its impact on motility stimulation and protective effects on cryopreservation and duration of motility, by computer-aided sperm analysis (CASA). Sperm quality improvement by Scriptaid was characterized by increased hyaluronan-binding activity, tyrosine phosphorylation, adenosine triphosphate (ATP) concentration, mitochondrial membrane potential, and an ameliorated AZS fertilization rate in clinical intracytoplasmic sperm injection (ICSI) experiments. Furthermore, our identification of active Scriptaid analogs and different metabolites induced by Scriptaid in spermatozoa lays a solid foundation for the future biomechanical exploration of sperm function. In summary, Scriptaid is a potential candidate for the treatment of male infertility in vitro as it improves sperm quality, prolongs sperm viability, and increases the fertilization rate.
Collapse
Affiliation(s)
- Yi-Ting Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bin Yan
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li-Na Guo
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Hua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhi-Yu Shao
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hua Diao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Su-Ying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He-Guo Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
3
|
Aguila L, Nociti RP, Sampaio RV, Therrien J, Meirelles FV, Felmer RN, Smith LC. Haploid androgenetic development of bovine embryos reveals imbalanced WNT signaling and impaired cell fate differentiation†. Biol Reprod 2023; 109:821-838. [PMID: 37788061 DOI: 10.1093/biolre/ioad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos. Among numerous disturbances, results showed that pluripotency pathways, especially the wingless-related integration site (WNT) signaling, were particularly unbalanced in hAE. Moreover, transcript levels of KLF4, NANOG, POU5F1, SOX2, CDX2, CTNNBL1, AXIN2, and GSK3B were noticeably altered in hAE, suggesting disturbance of pluripotency and canonical WNT pathways. To evaluate the role of WNT on hAE competence, we exposed early Day-5 morula stage embryos to the GSK3B inhibitor CHIR99021. Although no alterations were observed in pluripotency and WNT-related transcripts, exposure to CHIR99021 improved their ability to reach the blastocysts stage, confirming the importance of the WNT pathway in the developmental outcome of bovine hAE.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Flavio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Ricardo N Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Qiu X, Xiao X, Ren A, Xiao M, Tian H, Ling W, Wang M, Li Y, Zhao Y. Effects of PXD101 and Embryo Aggregation on the In Vitro Development of Mouse Parthenogenetic Embryos. Cell Reprogram 2020; 22:14-21. [PMID: 32011921 DOI: 10.1089/cell.2019.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To improve the isolation efficiency of parthenogenetic embryonic stem cells (pESCs) in mice, it is necessary to optimize the method to increase in vitro developmental competence of mice parthenogenetic blastocysts. Therefore, this study aims to investigate an optimal method for the production of mouse parthenogenetic blastocysts and isolation of pESC colonies by comparing the effects of two methods: (1) the treatment of histone deacetylase inhibitor PXD101 before, during, or after parthenogenetic activation; (2) parthenogenetic embryo aggregation; and (3) their combination treatment. The results suggest that application of PXD101 treatment and embryo aggregation could both improve the development of mouse parthenogenetic blastocysts (50 nM PXD101 treated 4 hours during activation and further 4 hours after activation: 40.0% vs. 20.0%; p < 0.05; two-cell embryo aggregation: 38.3% vs. 20.0%; p < 0.05) and also enhance the isolation rate of pESC colonies (PXD101: 33.3% vs. 11.8%; p < 0.05; two-cell embryo aggregation: 36.4% vs. 11.8%; p < 0.05). The combination of their treatments had the higher rate of parthenogenetic blastocyst development (41.7%) and significantly higher rate of pESC colony isolation from parthenogenetic blastocysts (45.0%); therefore, we concluded that the combination of these two methods (50 nM PXD101 treated for 8 hours and then aggregated at two-cell stage with 0.25% pronase for 10 minutes in our self-made concave) is considered the optimal way for the in vitro development of parthenogenetic blastocysts and subsequent pESC colony isolation in mice, opening new opportunities for application of this combination method to improve the parthenogenetic embryo development in other species.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Xiong Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Aoru Ren
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Min Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Haoyu Tian
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Wenhui Ling
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Mingyu Wang
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yuemin Li
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| |
Collapse
|
5
|
Yu MF, Wang JL, Yi JM, Ma L. Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos. PLoS One 2019; 14:e0220479. [PMID: 31356635 PMCID: PMC6663018 DOI: 10.1371/journal.pone.0220479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Ju-Long Wang
- Key Laboratory of Agricultural Animal Genetic, Breeding, and Reproduction for Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, China
- School of Biotechnology, Wuhu Institute of Technology, Wuhu, China
| | - Jian-Ming Yi
- Key Laboratory of Agricultural Animal Genetic, Breeding, and Reproduction for Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LM); (JMY)
| | - Lin Ma
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuchang, Wuhan, Hubei, China
- * E-mail: (LM); (JMY)
| |
Collapse
|
6
|
Qiu X, Xiao X, Martin GB, Li N, Ling W, Wang M, Li Y. Strategies for improvement of cloning by somatic cell nuclear transfer. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful tool that is being applied in a variety of fields as diverse as the cloning and production of transgenic animals, rescue of endangered species and regenerative medicine. However, cloning efficiency is still very low and SCNT embryos generally show poor developmental competency and many abnormalities. The low efficiency is probably due to incomplete reprogramming of the donor nucleus and most of the developmental problems are thought to be caused by epigenetic defects. Applications of SCNT will, therefore, depend on improvements in the efficiency of production of healthy clones. This review has summarised the progress and strategies that have been used to make improvements in various animal species, especially over the period 2010–2017, including strategies based on histone modification, embryo aggregation and mitochondrial function. There has been considerable investiagation into the mechanisms that underpin each strategy, helping us better understand the nature of genomic reprogramming and nucleus–cytoplasm interactions.
Collapse
|
7
|
Laguna-Barraza R, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Rizos D, Pérez-Cerezales S. Effects of the HDAC inhibitor scriptaid on the in vitro development of bovine embryos and on imprinting gene expression levels. Theriogenology 2018; 110:79-85. [PMID: 29353144 DOI: 10.1016/j.theriogenology.2017.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
This study examines the effects of the histone deacetylation inhibitor scriptaid (SCR) on preimplantation embryo development in vitro and on imprinting gene expression. We hypothesized that SCR would increase histone acetylation levels, enhance embryonic genome activation, and regulate imprinting and X-chromosome inactivation (XCI) in in vitro produced bovine embryos. Zygotes were cultured in vitro in presence or absence of SCR added at different time points. We assessed cleavage and blastocyst rates as well as the quality of blastocysts through: (i) differential cell counts; (ii) survival after vitrification/thawing and (iii) gene expression analysis -including imprinted genes. Blastocyst yields were not different in the control and experimental groups. While no significant differences were observed between groups in total cell or trophectoderm cell numbers, SCR treatment reduced the number of inner cell mass cells and improved the survival of vitrified embryos. Further, genes involved in the mechanism of paternal imprinting (GRB10, GNAS, XIST) were downregulated in presence of SCR compared with controls. These observations suggest SCR prevents deacetylation of paternally imprinting control regions and/or their up-regulation, as these events took place in controls. Whether or not such reductions in XIST and imprinting gene expression are beneficial for post implantation development remains to be clarified.
Collapse
Affiliation(s)
| | - M J Sánchez-Calabuig
- Dpto de Reproducción Animal, INIA, Madrid, Spain; Dpto de Medicina y Cirugía Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - D Rizos
- Dpto de Reproducción Animal, INIA, Madrid, Spain
| | | |
Collapse
|
8
|
Wang S, Liu B, Liu W, Xiao Y, Zhang H, Yang L. The effects of melatonin on bovine uniparental embryos development in vitro and the hormone secretion of COCs. PeerJ 2017; 5:e3485. [PMID: 28698819 PMCID: PMC5502088 DOI: 10.7717/peerj.3485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Melatonin is a unique multifunctional molecule that mediates reproductive functions in animals. In this study, we investigated the effects of melatonin on bovine parthenogenetic and androgenetic embryonic development, oocyte maturation, the reactive oxygen species (ROS) levels in parthenogenetic and androgenetic embryos and cumulus—oocyte complexes (COCs) hormone secretion with melatonin supplementation at four concentrations (0, 10, 20, and 30 pmol/mL), respectively. The results showed that melatonin significantly promoted the rates of bovine parthenogenetic and androgenetic embryonic cleavage and morula and blastocysts development (P < 0.05). The rate of cleavage was higher in the androgenetic embryo than that in the parthenogenetic embryo. Compared with the parthenogenetic embryos, the androgenetic embryos had a poor developmental competence from morula to blastocyst stage. Moreover, the levels of ROS were significantly lower in the parthenogenetic and androgenetic embryoes with melatonin-treated group than that of the control group (P < 0.05). Melatonin supplemented significantly increased the maturation rate of oocyte in vitro (P < 0.05). More importantly, melatonin significantly promoted the secretion of progesterone and estradiol by COCs (P < 0.05). To reveal the regulatory mechanism of melatonin on steroids synthesis, we found that steroidogenic genes (CYP11A1, CYP19A1 and StAR) were upregulated, suggesting that melatonin regulated estradiol and progesterone secretion through mediating the expression of steroidogenic genes (CYP11A1, CYP19A1 and StAR). In addition, MT1 and MT2 were identified in bovine early parthenogenetic and androgenetic embryos using western blot. It could be concluded that melatonin had beneficial effects on bovine oocyte in vitro maturation, COC hormone secretion, early development of subsequent parthenogenetic and androgenetic embryos. It is inferred that melatonin could be used to enhance the efficiency of in vitro developed embryos.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Baoru Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Wenju Liu
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Yao Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Hualin Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Qiu X, You H, Xiao X, Li N, Li Y. Effects of Trichostatin A and PXD101 on the In Vitro Development of Mouse Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2017; 19:1-9. [DOI: 10.1089/cell.2016.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Xiaoyan Qiu
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Haihong You
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Xiong Xiao
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Nan Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Yuemin Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| |
Collapse
|
10
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
11
|
Kim J, Kim JH, Jee BC, Suh CS, Kim SH. Is There a Link Between Expression Levels of Histone Deacetylase/Acetyltransferase in Mouse Sperm and Subsequent Blastocyst Development? Reprod Sci 2015; 22:1387-92. [PMID: 25868580 DOI: 10.1177/1933719115580997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Histone acetylation has been known to be significant in spermatogenesis. Histone acetylation is regulated by the act of histone deacetylases (HDACs) and histone acetyltransferases (HATs). We investigated the link between expression levels of HDACs and HATs in mouse sperm and subsequent blastocyst formation rate. In the univariate analysis, expression levels of HDAC1 and HAT were generally not associated with the blastocyst formation rate. When divided by the mature oocyte number category, a significant positive association was observed between the expression levels of HDAC1 and the blastocyst-forming rate in the highest (> 75th) percentile group (a group with ≥34 mature oocytes). In conclusion, expression of sperm HDAC1 could be considered as a possible predictor of embryo development in mice with high ovarian response.
Collapse
Affiliation(s)
- Jayeon Kim
- Department of Obstetrics and Gynecology, Cha Gangnam Hospital, Cha University, Seoul, South Korea Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Hee Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Bundang, South Korea
| | - Byung-Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Seok-Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Bundang, South Korea
| |
Collapse
|