1
|
Wang J, Wang L, Wang Z, Lv M, Fu J, Zhang Y, Qiu P, Shi D, Luo C. Vitamin C down-regulates the H3K9me3-dependent heterochromatin in buffalo fibroblasts via PI3K/PDK1/SGK1/KDM4A signal axis. Theriogenology 2023; 200:114-124. [PMID: 36805248 DOI: 10.1016/j.theriogenology.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
The success of reprogramming is dependent on the reprogramming factors enriched in the cytoplasm of recipient oocytes and the potential of donor nucleus to be reprogrammed. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as a major epigenetic barrier impeding complete reprogramming. Treating donor cell with vitamin C (Vc) can enhance the developmental potential of cloned embryos, but the underlying mechanisms still need to be elucidated. In this study, we found that 20μg/mL Vc could promote proliferation and inhibit apoptosis of BFFs, as well as down-regulate the H3K9me3-dependent heterochromatin and increase chromatin accessibility. Inhibited the expression of KDM4A resulted in increasing apoptosis rate and the H3K9me3-dependent heterochromatin, which can be restored by Vc. Moreover, Vc up-regulated the expression of KDM4A through PI3K/PDK1/SGK1 pathway. Inhibiting any factor in the signal axis of this PI3K pathway not only suppressed the activity of KDM4A but also substantially increased the level of H3K9me3 modification and the expression of the HP1α protein. Finally, Vc can rescue those negative effects induced by the blocking the PI3K/PDK1/SGK1 pathway. Collectively, Vc can down-regulate the H3K9me3-dependent heterochromatin in BFFs via PI3K/PDK1/SGK1/KDM4A signal axis, suggesting that Vc can turn the chromatin status of donor cells to be reprogrammed more easily.
Collapse
Affiliation(s)
- Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Lei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Meiyun Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Jiayuan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Peng Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
2
|
Li W, Zheng H, Yang Y, Xu H, Guo Z. A diverse English keyword search reveals the value of scriptaid treatment for porcine embryo development following somatic cell nuclear transfer. Reprod Fertil Dev 2022; 34:798-803. [PMID: 35580865 DOI: 10.1071/rd22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Incomplete epigenetic reprogramming of histone deacetylation (HDAC) is one of the main reasons for the low efficiency of somatic cell nuclear transfer (SCNT). Scriptaid is a synthetic HDAC inhibitor (HDACi) that may improve the efficiency of porcine SCNT. AIMS This study aimed to determine whether scriptaid increases the number of blastocyst cells or the cleavage rate. METHODS We conducted a meta-analysis of the pertinent literature published over the past decade. KEY RESULTS A total of 73 relevant papers were retrieved using a diverse English keyword search, and 11 articles were used for the meta-analysis. Scriptaid was positively correlated with blastocyst rate but had no effect on cleavage rate or blastocyst cell number. A subgroup analysis of blastocyst cell number showed that the staining method was the source of the heterogeneity. CONCLUSIONS In SCNT embryos, scriptaid treatment after activation can promote embryonic development, but there may be adverse effects on early development. IMPLICATIONS HDACi research should focus on SCNT birth efficiency.
Collapse
Affiliation(s)
- Wei Li
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Hui Zheng
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yali Yang
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Hong Xu
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P. R. China
| |
Collapse
|
3
|
Effect of ACY-1215 on cytoskeletal remodeling and histone acetylation in bovine somatic cell nuclear transfer embryos. Theriogenology 2022; 183:98-107. [DOI: 10.1016/j.theriogenology.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
4
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
5
|
Huang S, Liu S, Niu Y, Fu L. Scriptaid/exercise-induced lysine acetylation is another type of posttranslational modification occurring in titin. J Appl Physiol (1985) 2020; 128:276-285. [DOI: 10.1152/japplphysiol.00617.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Titin serves important functions in skeletal muscle during exercise, and posttranslational modifications of titin participate in the regulation of titin-based sarcomeric functions. Scriptaid has exercise-like effects through the inhibition of HDAC and regulatory acetylation of proteins. However, it remains mostly unclear if exercise could result in titin’s acetylation and whether Scriptaid could regulate acetylation of titin. We treated C57BL/6 mice with 6-wk treadmill exercise and 6-wk Scriptaid administration to explore Scriptaid’s effects on mice exercise capacity and whether Scriptaid administration/exercise could induce titin’s acetylation modification. An exercise endurance test was conducted to explore their effects on mice exercise capacity, and proteomic studies were conducted with gastrocnemius muscle tissue of mice from different groups to explore titin’s acetylation modification. We found that Scriptaid and exercise did not change titin’s protein expression, but they did induce acetylation modification changes of titin. In total, 333 acetylated lysine sites were identified. Exercise changed the acetylation levels of 33 lysine sites of titin, whereas Scriptaid changed acetylation levels of 31 titin lysine sites. Exercise treatment and Scriptaid administration shared 11 lysine sites. In conclusion, Scriptaid increased exercise endurance of mice by increasing the time mice spent running to fatigue. Acetylation is a common type of posttranslational modification of titin, and exercise/Scriptaid changed the acetylation levels of titin and titin-interacting proteins. Most importantly, titin may be a mediator through which Scriptaid and exercise modulate the properties and functions of exercise-induced skeletal muscle at the molecular level. NEW & NOTEWORTHY Scriptaid administration increased mouse exercise endurance. Acetylation is another type of posttranslational modification of titin. Scriptaid/exercise changed acetylation levels of titin and titin-interacting proteins. Titin may mediate exercise-induced skeletal muscle properties and functions.
Collapse
Affiliation(s)
- Song Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Embryology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Liu X, Luo C, Deng K, Wu Z, Wei Y, Jiang J, Lu F, Shi D. Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo (Bubalus bubalis) embryos. J Vet Med Sci 2018; 80:1291-1300. [PMID: 29925699 PMCID: PMC6115262 DOI: 10.1292/jvms.18-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to examine the effects of cytoplasmic volume on nucleus
reprogramming and developmental competence of buffalo handmade cloning (HMC) embryos. We
found that both HMC embryos derived from ~150% cytoplasm or ~225% cytoplasm resulted in a
higher blastocyst rate and total cell number of blastocyst in comparison with those from
~75% cytoplasm (25.4 ± 2.0, 27.9 ± 1.6% vs. 17.9 ± 3.1%; 150 ± 10, 169 ± 12 vs. 85 ± 6,
P<0.05). Meanwhile, the proportions of nuclear envelope breakdown
(NEBD) and premature chromosome condensation (PCC) were also increased in the embryos
derived from ~150 or ~225% enucleated cytoplasm compared to those from ~75% cytoplasm.
Moreover, HMC embryos derived from ~225% cytoplasm showed a decrease of global DNA
methylation from the 2-cell to the 4-cell stage in comparison with those of ~75% cytoplasm
(P<0.05). Furthermore, the expression of embryonic genome activation
(EGA) relative genes (eIF1A and U2AF) in HMC embryos
derived from ~225% cytoplasm at the 8-cell stages was also found to be enhanced compared
with that of the ~75% cytoplasm. Two of seven recipients were confirmed to be pregnant
following transfer of blastocysts derived from ~225% cytoplasm, and one healthy cloned
calf was delivered at the end of the gestation period, whereas no recipients were pregnant
after the transfer of blastocysts derived from ~75% cytoplasm. These results indicate that
the cytoplasmic volume of recipient oocytes affects donor nucleus reprogramming, and then
further accounted for the developmental ability of the reconstructed embryos.
Collapse
Affiliation(s)
- Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhulian Wu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
7
|
Selokar NL, Saini M, Palta P, Chauhan MS, Manik RS, Singla SK. Cloning of Buffalo, a Highly Valued Livestock Species of South and Southeast Asia: Any Achievements? Cell Reprogram 2018; 20:89-98. [DOI: 10.1089/cell.2017.0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | - Prabhat Palta
- ICAR-National Dairy Research Institute, Karnal, India
| | | | | | | |
Collapse
|
8
|
Huang X, Song L, Zhan Z, Gu H, Feng H, Li Y. Factors Affecting Mouse Somatic Cell Nuclear Reprogramming by Rabbit Ooplasms. Cell Reprogram 2017; 19:344-353. [PMID: 29135280 DOI: 10.1089/cell.2017.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos depends on compatibilities between ooplasmic and nuclear components. However, the mechanisms by which the compatibilities are regulated are still unknown. In this study, using mouse Oct4-green fluorescent protein (GFP) cells as donors and rabbit oocytes as recipients, we show that Oct4 and other pluripotency related genes were reactivated in some of mouse-rabbit iSCNT embryos, which could also activate Oct4 promoter-driven GFP reporter gene expression. Series nuclear transfer improved the efficiency of Oct4 reactivation. DNA demethylation of Oct4 promoter was detected in GFP positive iSCNT blastocysts, whereas GFP negative iSCNT embryos showed a low efficiency. Our results demonstrate that Oct4-GFP can well label the embryos with epigenetic remodeling and reactivation of pluripotent gene expression. Abundant rabbit mitochondria specific DNAs were identified in reconstructed mouse-rabbit embryos throughout preimplantation stages. Our data demonstrate that epigenetic remodeling and the complete mitochondrial match are not necessary for successful iSCNT embryo development before implantation.
Collapse
Affiliation(s)
- Xia Huang
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Lili Song
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiyan Zhan
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Haihui Gu
- 2 Department of Transfusion Medicine, Shanghai Changhai Hospital , Shanghai, China
| | - Haizhong Feng
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yanxin Li
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
9
|
Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci Rep 2017; 7:13403. [PMID: 29042680 PMCID: PMC5645405 DOI: 10.1038/s41598-017-13899-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence indicates the absence of paternally derived miRNAs, piwiRNAs, and proteins may be one important factor contributing to developmental failure in somatic cell cloned embryos. In the present study, we found microRNA-449b (miR-449b) was highly expressed in sperm. Target gene predictions and experimental verification indicate that several embryonic development-related genes, including CDK6, c-MYC, HDAC1 and BCL-2, are targets of miR-449b. We therefore investigated the role of miR-449b using somatic cell nuclear transfer (SCNT) embryo model. Bovine fetal fibroblasts, expressing miR-449b through a doxycycline (dox) induced expression system were used as nuclear donor cells for SCNT. The results showed that miR-449b expression in SCNT embryos significantly enhanced the cleavage rate at 48 h after activation and the levels of H3K9 acetylation at the 2-cell to 8-cell stages, meanwhile, significantly decreased the apoptosis index of blastocysts. In addition, we verified miR-449b could regulate the expression levels of CDK6, c-MYC, HDAC1 and BCL-2. In conclusion, the present study shows that miR-449b expression improves the first cleavage division, epigenetic reprogramming and apoptotic status of bovine preimplantation cloned embryos.
Collapse
|
10
|
Wang P, Li X, Cao L, Huang S, Li H, Zhang Y, Yang T, Jiang J, Shi D. MicroRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos. PLoS One 2017; 12:e0180535. [PMID: 28665977 PMCID: PMC5493425 DOI: 10.1371/journal.pone.0180535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Incomplete epigenetic reprogramming of donor cell nuclei is one of the main contributors to the low efficiency of somatic cell nuclear transfer (SCNT). To improve the success of SCNT, somatic cell DNA methylation levels must be reduced to those levels found in totipotent embryonic cells. Recent studies have demonstrated that miR-148a can affect DNA methylation via DNMT1 modulation in various cancers. Therefore, the focus of this study was to examine the influence of miR-148a on DNA methylation in donor cells and in SCNT embryo development. Thus, a stable cell line overexpressing miR-148a was established and used to produce SCNT embryos. Upon examination, DNMT1 was found to be a miR-148a target in porcine fetal fibroblasts (PFF). Furthermore, miR-148a overexpression in PFFs significantly decreased DNMT1 expression and global DNA methylation levels (P < 0.05). Moreover, miRNA-148a expression levels in SCNT embryos were significantly lower at the 2-cell and 4-cell stages when compared to IVF and parthenogenetic embryos. The group overexpressing miRNA-148a also showed a significant increase in blastocyst formation and total cell numbers (P < 0.05). Additionally, miR-148a overexpression altered the immunofluorescence signal of 5-mC and H3K9ac, and enhanced pluripotent gene (Oct4 and Nanog) expression levels during embryo development. These results indicate that miR-148a overexpression enhances the developmental potential of SCNT embryos and modifies epigenetic status.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail: (XPL); (DSS)
| | - Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haiyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail: (XPL); (DSS)
| |
Collapse
|