1
|
Vaiasicca S, James DW, Melone G, Saeed O, Francis LW, Corradetti B. Amniotic fluid-derived mesenchymal stem cells as a therapeutic tool against cytokine storm: a comparison with umbilical cord counterparts. Stem Cell Res Ther 2025; 16:151. [PMID: 40156072 PMCID: PMC11951844 DOI: 10.1186/s13287-025-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Several immunosuppressive therapies have been proposed as key treatment options for critically ill patients since the first appearance of severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) from different sources have been considered for their potential to attenuate the cytokine storm associated to COVID-19 and the consequent multi-organ failure, providing evidence for safe and efficacious treatments. Among them, administration of umbilical cord-derived MSCs (UC-MSCs) has demonstrated a significant increase in survival rates, largely due to their potent immunosuppressive properties. METHODS We applied next-generation sequencing (NGS) analysis to compare the transcriptomic profiles of MSCs isolated from two gestational sources: amniotic fluid (AF) obtained during prenatal diagnosis and their clinically relevant umbilical cord counterparts, for which datasets were publicly available. A full meta-analysis was performed to identify suitable GEO and NGS datasets for comparison between AF- and UC-MSC samples. RESULTS Transcriptome analysis revelaed significant differences between groups, despite both cell lines being strongly involved in the tissue development, crucial to achieve the complex task of wound healing. Significantly enriched hallmark genes suggest AF-MSC superior immunomodulatory features against signaling pathways actively involved in the cytokine storm (i.e., IL-2/STAT, TNF-a/NFkB, IL-2/STAT5, PI3K/AKT/mTOR). CONCLUSIONS The data presented here suggest that AF-MSCs hold significant promise for treating not only COVID-19-associated cytokine storms but also a variety of other inflammatory syndromes (i.e., those induced by bacterial infections, autoimmune disorders, and therapeutic interventions). Realizing the full potential of AF-MSCs as a comprehensive therapeutic approach in inflammatory disease management will require more extensive clinical trials and in-depth mechanistic studies.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
- Department of Life and Environmental Life, Polytechnic University of Marche, Ancona, Italy
| | - David W James
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Gianmarco Melone
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Omar Saeed
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Lewis W Francis
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Bruna Corradetti
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Seo MS, Kang KK, Oh SK, Sung SE, Kim KS, Kwon YS, Yun S. Isolation and Characterization of Feline Wharton's Jelly-Derived Mesenchymal Stem Cells. Vet Sci 2021; 8:vetsci8020024. [PMID: 33562192 PMCID: PMC7915203 DOI: 10.3390/vetsci8020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.
Collapse
Affiliation(s)
- Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Se-Kyung Oh
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kil-Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| |
Collapse
|
3
|
Ambrósio CE, Orlandin JR, Oliveira VC, Motta LCB, Pinto PAF, Pereira VM, Padoveze LR, Karam RG, Pinheiro ADO. Potential application of aminiotic stem cells in veterinary medicine. Anim Reprod 2020; 16:24-30. [PMID: 33299475 PMCID: PMC7720931 DOI: 10.21451/1984-3143-ar2018-00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
In regenerative medicine stem cell biology has become one of the most interesting and more often studied subject. The amniotic membrane is the innermost layer of the fetal membranes and is considered a potential tool to treat many pathologies. It is used because it can be collected from discarded fetal material and is a rich source of stem cells with high proliferation and plasticity ratio capable of proliferating and differentiate in vitro. We propose to elucidate the characteristics and potencial clinical application of cells derived of amniotic membrane in veterinary medicine.
Collapse
Affiliation(s)
- Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Jéssica Rodrigues Orlandin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Vanessa Cristina Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Lina Castelo Branco Motta
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Priscilla Avelino Ferreira Pinto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Vitória Mattos Pereira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Letícia Ribeiro Padoveze
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Rafael Garcia Karam
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Alessandra de Oliveira Pinheiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
4
|
Brinkhof B, Zhang B, Cui Z, Ye H, Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X 2020; 763S:100031. [PMID: 32550557 PMCID: PMC7285916 DOI: 10.1016/j.gene.2020.100031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) phenotypically share their positive expression of the International Society for Cell and Gene Therapy (ISCT) markers CD73, CD90 and CD105 with fibroblasts. Fibroblasts are often co-isolated as an unwanted by-product from biopsy and they can rapidly overgrow the MSCs in culture. Indeed, many other surface markers have been proposed, though no unique MSC specific marker has been identified yet. Quantitative PCR (qPCR) is a precise, efficient and rapid method for gene expression analysis. To identify a marker suitable for accurate MSC characterisation, qPCR was exploited. Methods and results Two commercially obtained bone marrow (BM) derived MSCs and an hTERT immortalised BM-MSC line (MSC-TERT) have been cultured for different days and at different oxygen levels before RNA extraction. Together with RNA samples previous extracted from umbilical cord derived MSCs and MSC-TERT cells cultured in 2D or 3D, this heterogeneous sample set was quantitatively analysed for the expression levels of 18 candidate MSC marker genes. The expression levels in MSCs were compared with the expression levels in fibroblasts to verify the differentiation capability of these genes between MSCs and fibroblasts. None of the ISCT markers could differentiate between fibroblasts and MSCs. A total of six other genes (ALCAM, CLIC1, EDIL3, EPHA2, NECTIN2, and TMEM47) were identified as possible biomarkers for accurate identification of MSCs. Conclusion Justified by considerations on expression level, reliability and specificity, Activated-Leukocyte Cell Adhesion Molecule (ALCAM) was the best candidate for improving the biomarker set of MSC identification.
Collapse
Key Words
- (q)PCR, (quantitative) polymerase chain reaction
- AD, adipose
- AF, Amniotic Fluid
- ALCAM, Activated-Leukocyte Cell Adhesion Molecule
- Activated-leukocyte cell adhesion molecule
- BM, bone marrow
- BSG, Basigin
- Biomarker
- CD, cluster of differentiation
- CLIC1, chloride intracellular channel 1
- CLIC4, chloride intracellular channel 4
- Cq, Quantification cycle
- DF, Dermal Fibroblasts
- DP, Dental Pulp
- EDIL3, EGF like repeats and discoidin domains 3
- ENG, Endoglin
- EPHA2, EPH receptor A2
- ER, Endoplasmatic Reticulum
- FACS, Fluorescence Assisted Cell Sorting
- FN1, Fibronectin 1
- IGFBP7, insulin like growth factor binding protein 7
- ISCT, International Society for Cell and Gene Therapy
- ITGA1, integrin subunit alpha 1
- LAMP1, lysosomal associated membrane protein 1
- LRRC59, leucine rich repeat containing 59
- MCAM, melanoma cell adhesion molecule
- MM, Multiple Myeloma
- MPC, Mesenchymal Progenitor Cell
- MSC
- MSC, Mesenchymal Stromal Cells
- NECTIN2, nectin cell adhesion molecule 2
- NK, Natural Killer
- NT5E, 5′-nucleotidase ecto
- OS, Osteosarcoma
- PL, Placenta
- PPIA, peptidylprolyl isomerase A
- PUM1, pumilio RNA binding family member 1
- RM, Regenerative Medicine
- RNA
- RNA-seq, RNA sequencing
- RT, Reverse Transcriptase
- Regenerative medicine
- SEM, Standard Error of the Mean
- TBP, TATA-box binding protein
- TCF, Tissue Culture Plate
- TE, Tissue Engineering
- TFRC, transferrin receptor
- THY1, Thy-1 cell surface antigen
- TLN1, Talin 1
- TMEM47, transmembrane protein 47
- UC, umbilical cord
- YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
- cDNA, DNA complementary to RNA
- qPCR
Collapse
Affiliation(s)
- Bas Brinkhof
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
5
|
Deng Y, Huang G, Zou L, Nong T, Yang X, Cui J, Wei Y, Yang S, Shi D. Isolation and characterization of buffalo (bubalus bubalis) amniotic mesenchymal stem cells derived from amnion from the first trimester pregnancy. J Vet Med Sci 2018. [PMID: 29515060 PMCID: PMC5938205 DOI: 10.1292/jvms.17-0556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amniotic mesenchymal stem cells (AMSCs) from livestock are valuable resources for animal
reproduction and veterinary therapeutic. The purpose of this study is to explore a
suitable way to isolate and culture the buffalo AMSCs (bAMSCs), and to identify their
biological characteristics. Digestion with a combination of trypsin-EDTA and collagenase
type I could obtain pure bAMSCs more effectively than trypsin-EDTA or collagenase type I
alone. bAMSCs could proliferate steadily in vitro culture and exhibited
fibroblastic-like morphology in vortex-shaped colony. bAMSCs were positive for
MSC-specific markers CD44, CD90, CD105,
CD73, β-integrin (CD29) and
CD166, and pluripotent markers OCT4,
SOX2, NANOG, REX-1,
SSEA-1, SSEA-4 and TRA-1-81, but
negative for hematopoietic markers CD34, CD45 and
epithelial cells specific marker Cytokeratin 18. In addition, bAMSCs were capable of
differentiating into adipogenic, osteogenic, chondrogenic and neural lineages, with
expression of FABP4, Ost, ACAN,
COL2A1, Nestin and β III-tubulin.
Glycogen synthase kinase 3 inhibitor: kenpaullone promoted bAMSCs to differentiate into
neural lineage. This study provides an effective protocol to obtain and characterize
bAMSCs, which have proven useful as a cell resource for buffalo cell reprogramming studies
and transgenic animal production.
Collapse
Affiliation(s)
- Yanfei Deng
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Guiting Huang
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China.,Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Lingxiu Zou
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Tianying Nong
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiaoling Yang
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jiayu Cui
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Yingming Wei
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Sufang Yang
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- Aninal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|