1
|
Shetty SS, Sowmya S, Pradeep A, Jayakumar R. Gingival Mesenchymal Stem Cells: A Periodontal Regenerative Substitute. Tissue Eng Regen Med 2025; 22:1-21. [PMID: 39607668 PMCID: PMC11711796 DOI: 10.1007/s13770-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable. The immunomodulatory and anti-inflammatory properties aid its usage in auto immune diseases and graft versus host disease. However, the differentiation, immunomodulatory and anti-inflammatory effects of GMSCs in periodontal tissue regeneration are less explored. METHODS In this review article, we have comprehensively compiled and described several reports on GMSCs till date, including their basic properties and isolation protocols, subpopulations, spheroid GMSCs, gingiva-derived IPSCsinduced pluripotent stem cells (iPSCs), their characterization, multilineage differentiation, and immunomodulatory properties along with precise applications in periodontal regeneration and peri-implantitis. RESULTS AND CONCLUSION Though the studies on GMSCs in periodontal regeneration lack superior quality random clinical trials, this review article still strengthens the view that GMSCs can be a newer source in periodontal tissue reconstruction/regeneration.
Collapse
Affiliation(s)
- Sonia S Shetty
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - S Sowmya
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Aathira Pradeep
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - R Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
2
|
Kakinoki R, Akagi M. Artificial Nerve Containing Stem Cells, Vascularity and Scaffold; Review of Our Studies. Stem Cell Rev Rep 2023; 19:382-391. [PMID: 36333622 PMCID: PMC9902426 DOI: 10.1007/s12015-022-10467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
To promote nerve regeneration within a conduit (tubulation), we have performed studies using a tube model based on four important concepts for tissue engineering: vascularity, growth factors, cells, and scaffolds. A nerve conduit containing a blood vascular pedicle (vessel-containing tube) accelerated axon regeneration and increased the axon regeneration distance; however, it did not increase the number or diameter of the axons that regenerated within the tube. A vessel-containing tube with bone-marrow-derived mesenchymal stem cell (BMSC) transplantation led to the increase in the number and diameter of regenerated axons. Intratubularly transplanted decellularized allogenic nerve basal lamellae (DABLs) worked as a frame to maintain the fibrin matrix structure containing neurochemical factors and to anchor the transplanted stem cells within the tube. For the clinical application of nerve conduits, they should exhibit capillary permeability, biodegradability, and flexibility. Nerbridge® (Toyobo Co. Ltd., Osaka, Japan) is a commercially available artificial nerve conduit. The outer cylinder is a polyglycolic acid (PGA) fiber mesh and possesses capillary permeability. We used the outer cylinder of Nerbridge as a nerve conduit. A 20-mm sciatic nerve deficit was bridged by the PGA mesh tube containing DABLs and BMSCs, and the resulting nerve regeneration was compared with that obtained through a 20-mm autologous nerve graft. A neve-regeneration rate of about 70%-80% was obtained in 20-mm-long autologous nerve autografts using the new conduits.
Collapse
Affiliation(s)
- Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, 377-2 Oono-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, 377-2 Oono-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
3
|
Bone marrow-derived mesenchymal stem cells transplanted into a vascularized biodegradable tube containing decellularized allogenic nerve basal laminae promoted peripheral nerve regeneration; can it be an alternative of autologous nerve graft? PLoS One 2021; 16:e0254968. [PMID: 34464381 PMCID: PMC8407554 DOI: 10.1371/journal.pone.0254968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Previously, we showed silicone nerve conduits containing a vascular bundle and decellularized allogenic basal laminae (DABLs) seeded with bone marrow-derived mesenchymal stem cells (BMSCs) demonstrated successful nerve regeneration. Nerve conduits should be flexible and biodegradable for clinical use. In the current study, we used nerve conduits made of polyglycoric acid (PGA) fiber mesh, which is flexible, biodegradable and capillary-permeable. DABLs were created using chemical surfactants to remove almost all cell debris. In part 1, capillary infiltration capability of the PGA tube was examined. Capillary infiltration into regenerated neural tissue was compared between the PGA tube with blood vessels attached extratubularly (extratubularly vascularized tube) and that containing blood vessels intratubularly (intratubularly vascularized tube). No significant difference was found in capillary formation or nerve regeneration between these two tubes. In part 2, a 20 mm gap created in a rat sciatic nerve model was bridged using the extratubularly vascularized PGA tube containing the DABLs with implantation of isogenic cultured BMSCs (TubeC+ group), that containing the DABLs without implantation of the BMSCs (TubeC- group), and 20 mm-long fresh autologous nerve graft (Auto group). Nerve regeneration in these three groups was assessed electrophysiologically and histomorphometrically. At 24 weeks, there was no significant difference in any electrophysiological parameters between TubeC+ and Auto groups, although all histological parameters in Auto group were significantly greater than those in TubeC+ and TubeC- groups, and TubeC+ group demonstrated significant better nerve regeneration than TubeC- group. The transplanted DABLs showed no signs of immunological rejection and some transplanted BMSCs were differentiated into cells with Schwann cell-like phenotype, which might have promoted nerve regeneration within the conduit. This study indicated that the TubeC+ nerve conduit may become an alternative to nerve autograft.
Collapse
|
4
|
Chiricosta L, Silvestro S, Gugliandolo A, Marconi GD, Pizzicannella J, Bramanti P, Trubiani O, Mazzon E. Extracellular Vesicles of Human Periodontal Ligament Stem Cells Contain MicroRNAs Associated to Proto-Oncogenes: Implications in Cytokinesis. Front Genet 2020; 11:582. [PMID: 32582296 PMCID: PMC7287171 DOI: 10.3389/fgene.2020.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The human Periodontal Ligament Stem Cells (hPDLSCs) exhibit self-renewal capacity and clonogenicity potential. The Extracellular Vesicles (EVs) secreted by hPDLSCs are particles containing lipids, proteins, mRNAs, and non-coding RNAs, among which microRNAs, that are important in intercellular communication. The purpose of this study was the analysis of the non-coding RNAs contained in the EVs derived from hPDLSCs using Next Generation Sequencing. Moreover, our data were enriched using bioinformatic tools. The analysis highlighted the presence of non-coding RNAs and five microRNAs: MIR24-2, MIR142, MIR335, MIR490, and MIR296. Our results show that these miRNAs target the genes classified in two terms of the Gene Ontology: "Ras protein signal transduction" and "Actin/microtubule cytoskeleton organization." Noteworthy, the in-deep analysis of our EVs highlights that the miRNAs could be implicated in the silencing of proto-oncogenes involved in 12 different types of tumors.
Collapse
Affiliation(s)
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti and Pescara, Chieti, Italy
| | | |
Collapse
|
5
|
Gugliandolo A, Diomede F, Cardelli P, Bramanti A, Scionti D, Bramanti P, Trubiani O, Mazzon E. Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration. J Biomed Mater Res A 2017; 106:126-137. [PMID: 28879677 DOI: 10.1002/jbm.a.36213] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Cardelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello,", National Research Council of Italy, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|