1
|
Bernal-Conde LD, Peña-Martínez V, Morato-Torres CA, Ramos-Acevedo R, Arias-Carrión Ó, Padilla-Godínez FJ, Delgado-González A, Palomero-Rivero M, Collazo-Navarrete O, Soto-Rojas LO, Gómez-Chavarín M, Schüle B, Guerra-Crespo M. Alpha-Synuclein Gene Alterations Modulate Tyrosine Hydroxylase in Human iPSC-Derived Neurons in a Parkinson's Disease Animal Model. Life (Basel) 2024; 14:728. [PMID: 38929711 PMCID: PMC11204703 DOI: 10.3390/life14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) caused by SNCA gene triplication (3XSNCA) leads to early onset, rapid progression, and often dementia. Understanding the impact of 3XSNCA and its absence is crucial. This study investigates the differentiation of human induced pluripotent stem cell (hiPSC)-derived floor-plate progenitors into dopaminergic neurons. Three different genotypes were evaluated in this study: patient-derived hiPSCs with 3XSNCA, a gene-edited isogenic line with a frame-shift mutation on all SNCA alleles (SNCA 4KO), and a normal wild-type control. Our aim was to assess how the substantia nigra pars compacta (SNpc) microenvironment, damaged by 6-hydroxydopamine (6-OHDA), influences tyrosine hydroxylase-positive (Th+) neuron differentiation in these genetic variations. This study confirms successful in vitro differentiation into neuronal lineage in all cell lines. However, the SNCA 4KO line showed unusual LIM homeobox transcription factor 1 alpha (Lmx1a) extranuclear distribution. Crucially, both 3XSNCA and SNCA 4KO lines had reduced Th+ neuron expression, despite initial successful neuronal differentiation after two months post-transplantation. This indicates that while the SNpc environment supports early neuronal survival, SNCA gene alterations-either amplification or knock-out-negatively impact Th+ dopaminergic neuron maturation. These findings highlight SNCA's critical role in PD and underscore the value of hiPSC models in studying neurodegenerative diseases.
Collapse
Affiliation(s)
- Luis Daniel Bernal-Conde
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Verónica Peña-Martínez
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - C. Alejandra Morato-Torres
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Rodrigo Ramos-Acevedo
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Óscar Arias-Carrión
- Movement and Sleep Disorders Unit, Dr. Manuel Gea González General Hospital, Mexico City 14080, Mexico;
| | - Francisco J. Padilla-Godínez
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Alexa Delgado-González
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Marcela Palomero-Rivero
- Neurodevelopment and Physiology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Omar Collazo-Navarrete
- National Laboratory of Genomic Resources, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Luis O. Soto-Rojas
- Laboratory of Molecular Pathogenesis, Laboratory 4, Building A4, Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City 54090, Mexico;
| | - Margarita Gómez-Chavarín
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Magdalena Guerra-Crespo
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Liu D, Bobrovskaya L, Zhou XF. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. BIOLOGY 2021; 10:1142. [PMID: 34827135 PMCID: PMC8614777 DOI: 10.3390/biology10111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. However, none of the studies has led to a promising therapy for patients with neurological disorders, despite the ongoing and completed clinical trials. There are many factors that may affect the outcome of cell therapy for neurological disorders due to the complexity of the nervous system, especially cell types for transplantation and the specific disease for treatment. This paper provides a review of the various cell types from humans that may be clinically used for neurological disorders, based on their characteristics and current progress in related studies.
Collapse
Affiliation(s)
| | | | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; (D.L.); (L.B.)
| |
Collapse
|
3
|
Telias M, Ben-Yosef D. Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Front Mol Neurosci 2021; 14:680018. [PMID: 34421534 PMCID: PMC8371257 DOI: 10.3389/fnmol.2021.680018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering. Stem Cells Int 2021; 2021:6697574. [PMID: 33968150 PMCID: PMC8081629 DOI: 10.1155/2021/6697574] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injuries and neurodegenerative disorders remain serious challenges, owing to the poor treatment outcomes of in situ neural stem cell regeneration. The most promising treatment for such injuries and disorders is stem cell-based therapies, but there remain obstacles in controlling the differentiation of stem cells into fully functional neuronal cells. Various biochemical and physical approaches have been explored to improve stem cell-based neural tissue engineering, among which electrical stimulation has been validated as a promising one both in vitro and in vivo. Here, we summarize the most basic waveforms of electrical stimulation and the conductive materials used for the fabrication of electroactive substrates or scaffolds in neural tissue engineering. Various intensities and patterns of electrical current result in different biological effects, such as enhancing the proliferation, migration, and differentiation of stem cells into neural cells. Moreover, conductive materials can be used in delivering electrical stimulation to manipulate the migration and differentiation of stem cells and the outgrowth of neurites on two- and three-dimensional scaffolds. Finally, we also discuss the possible mechanisms in enhancing stem cell neural differentiation using electrical stimulation. We believe that stem cell-based therapies using biocompatible conductive scaffolds under electrical stimulation and biochemical induction are promising for neural regeneration.
Collapse
|