1
|
Hoffmann M, Poschenrieder J, Incudini M, Baier S, Fritz A, Maier A, Hartung M, Hoffmann C, Trummer N, Adamowicz K, Picciani M, Scheibling E, Harl M, Lesch I, Frey H, Kayser S, Wissenberg P, Schwartz L, Hafner L, Acharya A, Hackl L, Grabert G, Lee SG, Cho G, Cloward M, Jankowski J, Lee H, Tsoy O, Wenke N, Pedersen A, Bønnelykke K, Mandarino A, Melograna F, Schulz L, Climente-González H, Wilhelm M, Iapichino L, Wienbrandt L, Ellinghaus D, Van Steen K, Grossi M, Furth P, Hennighausen L, Di Pierro A, Baumbach J, Kacprowski T, List M, Blumenthal D. Network medicine-based epistasis detection in complex diseases: ready for quantum computing. Nucleic Acids Res 2024; 52:10144-10160. [PMID: 39175109 PMCID: PMC11417373 DOI: 10.1093/nar/gkae697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.
Collapse
Affiliation(s)
- Markus Hoffmann
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a) Technical University of Munich, D-85748 Garching, Germany
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Julian M Poschenrieder
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Massimiliano Incudini
- Dipartimento di Informatica, Universit‘a di Verona, Strada le Grazie 15 - 34137 Verona, Italy
| | - Sylvie Baier
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Amelie Fritz
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800 Kgs. Lyngby, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Christian Hoffmann
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Nico Trummer
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Evelyn Scheibling
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Maximilian V Harl
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Ingmar Lesch
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hunor Frey
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Simon Kayser
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Paul Wissenberg
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Leon Schwartz
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Leon Hafner
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a) Technical University of Munich, D-85748 Garching, Germany
| | - Aakriti Acharya
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Lena Hackl
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Gordon Grabert
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Sung-Gwon Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Gyuhyeok Cho
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | - Jakub Jankowski
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Hye Kyung Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Nina Wenke
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800 Kgs. Lyngby, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Mandarino
- International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Federico Melograna
- BIO3 - Systems Genetics; GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Systems Medicine; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Laura Schulz
- Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (LRZ), Garching b. München, Germany
| | | | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching, Germany
| | - Luigi Iapichino
- Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (LRZ), Garching b. München, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kristel Van Steen
- BIO3 - Systems Genetics; GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Systems Medicine; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Michele Grossi
- European Organization for Nuclear Research (CERN), Geneva1211, Switzerland
| | - Priscilla A Furth
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a) Technical University of Munich, D-85748 Garching, Germany
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Alessandra Di Pierro
- Dipartimento di Informatica, Universit‘a di Verona, Strada le Grazie 15 - 34137 Verona, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Denmark
| | - Tim Kacprowski
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
2
|
Hoffmann M, Poschenrieder JM, Incudini M, Baier S, Fitz A, Maier A, Hartung M, Hoffmann C, Trummer N, Adamowicz K, Picciani M, Scheibling E, Harl MV, Lesch I, Frey H, Kayser S, Wissenberg P, Schwartz L, Hafner L, Acharya A, Hackl L, Grabert G, Lee SG, Cho G, Cloward M, Jankowski J, Lee HK, Tsoy O, Wenke N, Pedersen AG, Bønnelykke K, Mandarino A, Melograna F, Schulz L, Climente-González H, Wilhelm M, Iapichino L, Wienbrandt L, Ellinghaus D, Van Steen K, Grossi M, Furth PA, Hennighausen L, Di Pierro A, Baumbach J, Kacprowski T, List M, Blumenthal DB. Network medicine-based epistasis detection in complex diseases: ready for quantum computing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298205. [PMID: 38076997 PMCID: PMC10705612 DOI: 10.1101/2023.11.07.23298205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.
Collapse
Affiliation(s)
- Markus Hoffmann
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Julian M. Poschenrieder
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Massimiliano Incudini
- Dipartimento di Informatica, Universit’a di Verona, Strada le Grazie 15 - 34137, Verona, Italy
| | - Sylvie Baier
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Amelie Fitz
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800 Kgs. Lyngby, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Christian Hoffmann
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Nico Trummer
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Evelyn Scheibling
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maximilian V. Harl
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Ingmar Lesch
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Hunor Frey
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Simon Kayser
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Paul Wissenberg
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Leon Schwartz
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Leon Hafner
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
| | - Aakriti Acharya
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Braunschweig, Germany
| | - Lena Hackl
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Gordon Grabert
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Braunschweig, Germany
| | - Sung-Gwon Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Gyuhyeok Cho
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Matthew Cloward
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jakub Jankowski
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Nina Wenke
- Institute for Computational Systems Biology, University of Hamburg, Germany
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800 Kgs. Lyngby, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Mandarino
- International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Federico Melograna
- BIO3 - Systems Genetics; GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Systems Medicine; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Laura Schulz
- Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (LRZ), Garching b. München, Germany
| | | | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Luigi Iapichino
- Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (LRZ), Garching b. München, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kristel Van Steen
- BIO3 - Systems Genetics; GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Systems Medicine; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Michele Grossi
- European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland
| | - Priscilla A. Furth
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Alessandra Di Pierro
- Dipartimento di Informatica, Universit’a di Verona, Strada le Grazie 15 - 34137, Verona, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technische Universität Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Germany
| | - David B. Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Yilmaz S, Fakhouri M, Koyutürk M, Çiçek AE, Tastan O. Uncovering complementary sets of variants for predicting quantitative phenotypes. Bioinformatics 2022; 38:908-917. [PMID: 34864867 DOI: 10.1093/bioinformatics/btab803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Genome-wide association studies show that variants in individual genomic loci alone are not sufficient to explain the heritability of complex, quantitative phenotypes. Many computational methods have been developed to address this issue by considering subsets of loci that can collectively predict the phenotype. This problem can be considered a challenging instance of feature selection in which the number of dimensions (loci that are screened) is much larger than the number of samples. While currently available methods can achieve decent phenotype prediction performance, they either do not scale to large datasets or have parameters that require extensive tuning. RESULTS We propose a fast and simple algorithm, Macarons, to select a small, complementary subset of variants by avoiding redundant pairs that are likely to be in linkage disequilibrium. Our method features two interpretable parameters that control the time/performance trade-off without requiring parameter tuning. In our computational experiments, we show that Macarons consistently achieves similar or better prediction performance than state-of-the-art selection methods while having a simpler premise and being at least two orders of magnitude faster. Overall, Macarons can seamlessly scale to the human genome with ∼107 variants in a matter of minutes while taking the dependencies between the variants into account. AVAILABILITYAND IMPLEMENTATION Macarons is available in Matlab and Python at https://github.com/serhan-yilmaz/macarons. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Serhan Yilmaz
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohamad Fakhouri
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
| | - Mehmet Koyutürk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - A Ercüment Çiçek
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Oznur Tastan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|