1
|
Wu NC, Huang RSP, Tseng CL, Sokol ES, Serway CN, Chadwick G, Mitchell J, Kelley MJ. Clinical impact of UV mutational signatures in Veterans with cancer. Oncologist 2024:oyae335. [PMID: 39674577 DOI: 10.1093/oncolo/oyae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND UV-related DNA damage signature (UVsig) is highly specific for cutaneous cancers. The prevalence of UVsig among tumors without a primary site and tumors of extracutaneous origin were previously reported, suggesting potential misclassification of cancers. Our study aims to assess if the knowledge of UVsig at diagnosis would change first-line treatment recommendation. METHODS The main outcome was the potential clinical impact (PCI) of UVsig. High PCI was defined as UVsig leading to change in diagnosis and first-line therapy. Medium PCI was a change in diagnosis, but appropriate therapy was offered. Low PCI group had diagnosis modified by clinicians and treated as cutaneous cancer independently of UVsig. RESULTS Among 5565 cases, 650 (12%) were positive for a UVsig. In the cancer of unknown primary group: 20 (49%), 9 (22%), and 12 (29%) cases were categorized in the high, medium, and low PCI group, respectively. In the cancer of extracutaneous origin cohort: 22 (54%), 15 (36%), and 4 (10%) cases were high, medium, and low PCI, respectively. The diagnosis would have changed in 14% of Veterans with UVsig positive tumor. Among all high PCI cases, 37 (88%) received chemotherapy that was not indicated based on a UVsig-informed diagnosis of cutaneous malignancy. CONCLUSION Our study suggested that UVsig would lead to revision of the working clinical diagnosis and significantly alter the first-line treatment in at least half of cancers of unknown primary or extracutaneous origin with UVsig. Knowledge of UVsig could lead to more effective and less toxic therapy for patients with cancer.
Collapse
Affiliation(s)
- Ni-Chi Wu
- Department of Veterans Affairs, VA National Oncology Program. Durham, NC, United States
| | | | - Chin-Lin Tseng
- Department of Veterans Affairs, VA National Oncology Program. Durham, NC, United States
| | | | - Christine N Serway
- Department of Veterans Affairs, VA National Oncology Program. Durham, NC, United States
- Danaher Diagnostics, Washington, DC, United States
| | | | | | - Michael J Kelley
- Department of Veterans Affairs, VA National Oncology Program. Durham, NC, United States
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC, United States
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Yamamoto H, Arai H, Oikawa R, Umemoto K, Takeda H, Mizukami T, Kubota Y, Doi A, Horie Y, Ogura T, Izawa N, Moore JA, Sokol ES, Sunakawa Y. The Molecular Landscape of Gastric Cancers for Novel Targeted Therapies from Real-World Genomic Profiling. Target Oncol 2024; 19:459-471. [PMID: 38613733 DOI: 10.1007/s11523-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Panel-based comprehensive genomic profiling is used in clinical practice worldwide; however, large real-world datasets of patients with advanced gastric cancer are not well known. OBJECTIVE We investigated what differences exist in clinically relevant alterations for molecularly defined or age-stratified subgroups. METHODS This was a collaborative biomarker study of a real-world dataset from comprehensive genomic profiling testing (Foundation Medicine, Inc.). Hybrid capture was carried out on at least 324 cancer-related genes and select introns from 31 genes frequently rearranged in cancer. Overall, 4634 patients were available for analyses and were stratified by age (≥ 40/< 40 years), microsatellite instability status, tumor mutational burden status (high 10 ≥ /low < 10 Muts/Mb), Epstein-Barr virus status, and select gene alterations. We analyzed the frequency of alterations with a chi-square test with Yate's correction. RESULTS Genes with frequent alterations included TP53 (60.1%), ARID1A (19.6%), CDKN2A (18.2%), KRAS (16.6%), and CDH1 (15.8%). Differences in comprehensive genomic profiling were observed according to molecularly defined or age-stratified subgroups. Druggable genomic alterations were detected in 31.4% of patients; ATM (4.4%), BRAF V600E (0.4%), BRCA1 (1.5%), BRCA2 (2.9%), ERBB2 amplification (9.2%), IDH1 (0.2%), KRAS G12C (0.7%), microsatellite instability-high (4.8%), NTRK1/2/3 fusion (0.13%), PIK3CA mutation (11.4%), and tumor mutational burden-high (9.4%). CDH1 alterations and MET amplification were significantly more frequent in patients aged < 40 years (27.7 and 6.2%) than in those aged ≥ 40 years (14.7 and 4.0%). CONCLUSIONS Real-world datasets from clinical panel testing revealed the genomic landscape in gastric cancer by subgroup. These findings provide insights for the current therapeutic strategies and future development of treatments in gastric cancer.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Bioinformatics, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ritsuko Oikawa
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kumiko Umemoto
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Takeda
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takuro Mizukami
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yohei Kubota
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Doi
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiki Horie
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Ogura
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Jay A Moore
- Cancer Genomics Research, Foundation Medicine, Inc., Cambridge, MA, USA
| | - Ethan S Sokol
- Cancer Genomics Research, Foundation Medicine, Inc., Cambridge, MA, USA
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
3
|
Krumm N, Khasnavis NS, Radke M, Banda K, Davies HR, Pennil C, McLean K, Paulson VA, Konnick EQ, Johnson WC, Huff G, Nik-Zainal S, Swisher EM, Lockwood CM, Salipante SJ. Diagnosis of Ovarian Carcinoma Homologous Recombination DNA Repair Deficiency From Targeted Gene Capture Oncology Assays. JCO Precis Oncol 2023; 7:e2200720. [PMID: 37196218 PMCID: PMC10309534 DOI: 10.1200/po.22.00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE Homologous recombination DNA repair deficiency (HRD) is a therapeutic biomarker for sensitivity to platinum and poly(ADP-ribose) polymerase inhibitor therapies in breast and ovarian cancers. Several molecular phenotypes and diagnostic strategies have been developed to assess HRD; however, their clinical implementation remains both technically challenging and methodologically unstandardized. METHODS We developed and validated an efficient and cost-effective strategy for HRD determination on the basis of calculation of a genome-wide loss of heterozygosity (LOH) score through targeted, hybridization capture and next-generation DNA sequencing augmented with 3,000 common, polymorphic single-nucleotide polymorphism (SNP) sites distributed genome-wide. This approach requires minimal sequence reads and can be readily integrated into targeted gene capture workflows already in use for molecular oncology. We interrogated 99 ovarian neoplasm-normal pairs using this method and compared results with patient mutational genotypes and orthologous predictors of HRD derived from whole-genome mutational signatures. RESULTS LOH scores of ≥11% had >86% sensitivity for identifying tumors with HRD-causing mutations in an independent validation set (90.6% sensitivity for all specimens). We found strong agreement of our analytic approach with genome-wide mutational signature assays for determining HRD, yielding an estimated 96.7% sensitivity and 50% specificity. We observed poor concordance with mutational signatures inferred using only mutations detected by the targeted gene capture panel, suggesting inadequacy of the latter approach. LOH score did not significantly correlate with treatment outcomes. CONCLUSION Targeted sequencing of genome-wide polymorphic SNP sites can be used to infer LOH events and subsequently diagnose HRD in ovarian tumors. The methods presented here are readily generalizable to other targeted gene oncology assays and could be adapted for HRD diagnosis in other tumor types.
Collapse
Affiliation(s)
- Niklas Krumm
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Nithisha S. Khasnavis
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Marc Radke
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Kalyan Banda
- Department of Medicine, Oncology Division, University of Washington School of Medicine, Seattle, WA
| | - Helen R. Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Pennil
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Kathryn McLean
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Vera A. Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Eric Q. Konnick
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Winslow C. Johnson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Grogan Huff
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth M. Swisher
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Christina M. Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|