1
|
Khan MS, Qureshi N, Khan R, Son YO, Maqbool T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects. Front Cell Neurosci 2025; 19:1578138. [PMID: 40260080 PMCID: PMC12009953 DOI: 10.3389/fncel.2025.1578138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic and biomedical research in recent years. It enables editing and modulation of gene function with an unparalleled precision and effectiveness. Among the various applications and prospects of this technology, the opportunities it offers in unraveling the molecular underpinnings of a myriad of central nervous system diseases, including neurodegenerative disorders, psychiatric conditions, and developmental abnormalities, are unprecedented. In this review, we highlight the applications of CRISPR/Cas9-based therapeutics as a promising strategy for management of Alzheimer's disease and transformative impact of this technology on AD research. Further, we emphasize the role of CRISPR/Cas9 in generating accurate AD models for identification of novel therapeutic targets, besides the role of CRISPR-based therapies aimed at correcting AD-associated mutations and modulating the neurodegenerative processes. Furthermore, various delivery systems are reviewed and potential of the non-viral nanotechnology-based carriers for overcoming the critical limitations of effective delivery systems for CRISPR/Cas9 is discussed. Overall, this review highlights the promise and prospects of CRISPR/Cas9 technology for unraveling the intricate molecular processes underlying the development of AD, discusses its limitations, ethical concerns and several challenges including efficient delivery across the BBB, ensuring specificity, avoiding off-target effects. This article can be helpful in better understanding the applications of CRISPR/Cas9 based therapeutic approaches and the way forward utilizing enormous potential of this technology in targeted, gene-specific treatments that could change the trajectory of this debilitating and incurable illness.
Collapse
Affiliation(s)
- Mohamad Sultan Khan
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Nousheen Qureshi
- Department of Higher Education, Government of Jammu and Kashmir, Srinagar, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Thaldar D, Shozi B, Steytler M, Hendry G, Botes M, Mnyandu N, Naidoo M, Pillay S, Slabbert M, Townsend B. A deliberative public engagement study on heritable human genome editing among South Africans: Study results. PLoS One 2022; 17:e0275372. [PMID: 36441783 PMCID: PMC9704621 DOI: 10.1371/journal.pone.0275372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
This paper reports the results of a public engagement study on heritable human genome editing (HHGE) carried out in South Africa, which was conducted in accordance with a study protocol that was published in this journal in 2021. This study is novel as it is the first public engagement study on HHGE in Africa. It used a deliberative public engagement (DPE) methodology, entailing inter alia that measures were put in place to ensure that potential participants became informed about HHGE, and that deliberations between the participants were facilitated with the aim of seeking consensus. A diverse group of 30 persons was selected to participate in the DPE study, which took place via Zoom over three consecutive weekday evenings. The main results are: Provided that HHGE is safe and effective, an overwhelming majority of participants supported allowing the use of HHGE to prevent genetic health conditions and for immunity against TB and HIV/Aids, while significant majorities opposed allowing HHGE for enhancement. The dominant paradigm during the deliberations was balancing health benefits (and associated improvements in quality of life) with unforeseen health risks (such as loss of natural immunity). The seriousness of a health condition emerged as the determining factor for the policy choice of whether to allow an application of HHGE. More generally, equal access to HHGE qua healthcare service featured as an important value, and it was uncontested that the South African government should allocate resources to promote scientific research into HHGE. These results are aligned with the policy principles for regulating HHGE in South Africa suggested by Thaldar et al. They call for urgent revision of South African ethics guidelines that currently prohibit research on HHGE, and for dedicated HHGE legal regulations that provide a clear and comprehensive legal pathway for researchers who intend to conduct HHGE research and clinical trials.
Collapse
Affiliation(s)
- Donrich Thaldar
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| | - Bonginkosi Shozi
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Institute for Practical Ethics, University of California San Diego, San Diego, California, United States of America
| | | | | | - Marietjie Botes
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Interdisciplinary Centre for Security, Reliability and Trust, Université du Luxembourg, Luxembourg, Luxembourg
| | - Ntokozo Mnyandu
- School of Law, University of KwaZulu-Natal, Durban, South Africa
| | | | - Siddharthiya Pillay
- School of Management, Information Technology & Governance, University of KwaZulu-Natal, Durban, South Africa
| | - Magda Slabbert
- College of Law, University of South Africa, Pretoria, South Africa
| | - Beverley Townsend
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- York Law School, University of York, York, United Kingdom
| |
Collapse
|
3
|
Frederiksen HR, Doehn U, Tveden-Nyborg P, Freude KK. Non-immunogenic Induced Pluripotent Stem Cells, a Promising Way Forward for Allogenic Transplantations for Neurological Disorders. Front Genome Ed 2021; 2:623717. [PMID: 34713244 PMCID: PMC8525385 DOI: 10.3389/fgeed.2020.623717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Neurological disorder is a general term used for diseases affecting the function of the brain and nervous system. Those include a broad range of diseases from developmental disorders (e.g., Autism) over injury related disorders (e.g., stroke and brain tumors) to age related neurodegeneration (e.g., Alzheimer's disease), affecting up to 1 billion people worldwide. For most of those disorders, no curative treatment exists leaving symptomatic treatment as the primary mean of alleviation. Human induced pluripotent stem cells (hiPSC) in combination with animal models have been instrumental to foster our understanding of underlying disease mechanisms in the brain. Of specific interest are patient derived hiPSC which allow for targeted gene editing in the cases of known mutations. Such personalized treatment would include (1) acquisition of primary cells from the patient, (2) reprogramming of those into hiPSC via non-integrative methods, (3) corrective intervention via CRISPR-Cas9 gene editing of mutations, (4) quality control to ensure successful correction and absence of off-target effects, and (5) subsequent transplantation of hiPSC or pre-differentiated precursor cells for cell replacement therapies. This would be the ideal scenario but it is time consuming and expensive. Therefore, it would be of great benefit if transplanted hiPSC could be modulated to become invisible to the recipient's immune system, avoiding graft rejection and allowing for allogenic transplantations. This review will focus on the current status of gene editing to generate non-immunogenic hiPSC and how these cells can be used to treat neurological disorders by using cell replacement therapy. By providing an overview of current limitations and challenges in stem cell replacement therapies and the treatment of neurological disorders, this review outlines how gene editing and non-immunogenic hiPSC can contribute and pave the road for new therapeutic advances. Finally, the combination of using non-immunogenic hiPSC and in vivo animal modeling will highlight the importance of models with translational value for safety efficacy testing; before embarking on human trials.
Collapse
Affiliation(s)
- Henriette Reventlow Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Doehn
- Stem Cell Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Kristine K. Freude
| |
Collapse
|
4
|
Barman NC, Khan NM, Islam M, Nain Z, Roy RK, Haque A, Barman SK. CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease-A Narrative Review. Neurol Ther 2020; 9:419-434. [PMID: 33089409 PMCID: PMC7606404 DOI: 10.1007/s40120-020-00218-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder characterized by cognitive deficiency and development of amyloid-β (Aβ) plaques and neurofibrillary tangles, comprising hyperphosphorylated tau. The number of patients with AD is alarmingly increasing worldwide; currently, at least 50 million people are thought to be living with AD. The mutations or alterations in amyloid-β precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes are known to be associated with the pathophysiology of AD. Effective medication for AD is still elusive and many gene-targeted clinical trials have failed to meet the expected efficiency standards. The genome editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been emerging as a powerful technology to correct anomalous genetic functions and is now widely applied to the study of AD. This simple yet powerful tool for editing genes showed the huge potential to correct the unwanted mutations in AD-associated genes such as APP, PSEN1, and PSEN2. So, it has opened a new door for the development of empirical AD models, diagnostic approaches, and therapeutic lines in studying the complexity of the nervous system ranging from different cell types (in vitro) to animals (in vivo). This review was undertaken to study the related mechanisms and likely applications of CRISPR-Cas9 as an effective therapeutic tool in treating AD.
Collapse
Affiliation(s)
- Nirmal Chandra Barman
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Niuz Morshed Khan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Maidul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Zulkar Nain
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Rajib Kanti Roy
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Anwarul Haque
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Shital Kumar Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|