1
|
Wei J, Liu J, Wang Z, Yang Y, Tian Y, Wang S, Gao BQ, Gao S, Yang L, Tang J, Wang Y. Engineering of a high-fidelity Cas12a nuclease variant capable of allele-specific editing. PLoS Biol 2024; 22:e3002680. [PMID: 38865309 PMCID: PMC11168656 DOI: 10.1371/journal.pbio.3002680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Jingtong Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Yuwen Tian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Shengzhou Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yang
- Center for Molecular Medicine, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongming Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang M, Rieber L, van Baaren J, Morgan M, Merrett S, McDowell I, Bowen T. Diverse Class 2 CRISPR Effectors as Active Nucleases with Expanded Targeting Capabilities. CRISPR J 2024; 7:120-130. [PMID: 38635326 DOI: 10.1089/crispr.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
CRISPR-Cas systems have proven effective in a variety of applications due to their ease of use and relatively high editing efficiency. Yet, any individual CRISPR-Cas system has inherent limitations, necessitating a diversity of RNA-guided nucleases to suit applications with distinct needs. We searched through metagenomic sequences to identify RNA-guided nucleases and found enzymes from diverse CRISPR-Cas types and subtypes, the most promising of which we developed into gene-editing platforms. Based on prior annotations of the metagenomic sequences, we establish the likely taxa and sampling locations where Class 2 CRISPR-Cas systems active in eukaryotes may be found. The newly discovered systems show robust capabilities as gene editors and base editors.
Collapse
Affiliation(s)
- Meng Wang
- UCB Biosciences Inc, Early Solutions, Cambridge, Massachusetts, USA
| | - Lila Rieber
- UCB Biosciences Inc, Early Solutions, Durham, North Carolina, USA
| | | | - Meaghan Morgan
- UCB Biosciences Inc, Early Solutions, Durham, North Carolina, USA
| | | | - Ian McDowell
- UCB Biosciences Inc, Early Solutions, Durham, North Carolina, USA
| | - Tyson Bowen
- UCB Biosciences Inc, Early Solutions, Durham, North Carolina, USA
| |
Collapse
|
3
|
Sharrar A, Arake de Tacca L, Meacham Z, Staples-Ager J, Collingwood T, Rabuka D, Schelle M. Discovery and engineering of AiEvo2, a novel Cas12a nuclease for human gene editing applications. J Biol Chem 2024; 300:105685. [PMID: 38272227 PMCID: PMC10877636 DOI: 10.1016/j.jbc.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here, we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We engineer the nuclease (termed AiEvo2) for increased specificity, protospacer adjacent motif recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington's patient-derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 chimeric antigen receptor-T-cell therapy from primary human T cells using multiplexed simultaneous editing and chimeric antigen receptor insertion. To further ensure precise editing, we engineered an anti-CRISPR protein to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel engineered anti-CRISPR protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - David Rabuka
- Acrigen Biosciences, Inc, Berkeley, California, USA
| | | |
Collapse
|
4
|
Lamothe RC, Storlie MD, Espinosa DA, Rudlaff R, Browne P, Liu J, Rivas A, Devoto A, Oki J, Khoubyari A, Goltsman DSA, Lin JL, Butterfield CN, Brown CT, Thomas BC, Cost GJ. Novel CRISPR-Associated Gene-Editing Systems Discovered in Metagenomic Samples Enable Efficient and Specific Genome Engineering. CRISPR J 2023. [PMID: 37219969 DOI: 10.1089/crispr.2022.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Development of medicines using gene editing has been hampered by enzymological and immunological impediments. We described previously the discovery and characterization of improved, novel gene-editing systems from metagenomic data. In this study, we substantially advance this work with three such gene-editing systems, demonstrating their utility for cell therapy development. All three systems are capable of reproducible, high-frequency gene editing in primary immune cells. In human T cells, disruption of the T cell receptor (TCR) alpha-chain was induced in >95% of cells, both paralogs of the TCR beta-chain in >90% of cells, and >90% knockout of β2-microglobulin, TIGIT, FAS, and PDCD1. Simultaneous double knockout of TRAC and TRBC was obtained at a frequency equal to that of the single edits. Gene editing with our systems had minimal effect on T cell viability. Furthermore, we integrate a chimeric antigen receptor (CAR) construct into TRAC (up to ∼60% of T cells), and demonstrate CAR expression and cytotoxicity. We next applied our novel gene-editing tools to natural killer (NK) cells, B cells, hematopoietic stem cells, and induced pluripotent stem cells, generating similarly efficient cell-engineering outcomes including the creation of active CAR-NK cells. Interrogation of our gene-editing systems' specificity reveals a profile comparable with or better than Cas9. Finally, our nucleases lack preexisting humoral and T cell-based immunity, consistent with their sourcing from nonhuman pathogens. In all, we show these new gene-editing systems have the activity, specificity, and translatability necessary for use in cell therapy development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason Liu
- Metagenomi, Inc., Emeryville, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mohr M, Damas N, Gudmand-Høyer J, Zeeberg K, Jedrzejczyk D, Vlassis A, Morera-Gómez M, Pereira-Schoning S, Puš U, Oliver-Almirall A, Lyholm Jensen T, Baumgartner R, Tate Weinert B, Gill RT, Warnecke T. The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells. ACS Synth Biol 2023; 12:375-389. [PMID: 36750230 PMCID: PMC9942205 DOI: 10.1021/acssynbio.2c00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 02/09/2023]
Abstract
CRISPR-Cas12a nucleases have expanded the toolbox for targeted genome engineering in a broad range of organisms. Here, using a high-throughput engineering approach, we explored the potential of a novel CRISPR-MAD7 system for genome editing in human cells. We evaluated several thousand optimization conditions and demonstrated accurate genome reprogramming with modified MAD7. We identified crRNAs that allow for ≤95% non-homologous end joining (NHEJ) and 66% frameshift mutations in various genes and observed the high-cleavage fidelity of MAD7 resulting in undetectable off-target activity. We explored the dsDNA delivery efficiency of CRISPR-MAD7, and by using our optimized transfection protocol, we obtained ≤85% chimeric antigen receptor (CAR) insertions in primary T cells, thus exceeding the baseline integration efficiencies of therapeutically relevant transgenes using currently available virus-free technologies. Finally, we evaluated multiplex editing efficiency with CRISPR-MAD7 and demonstrated simultaneous ≤35% CAR transgene insertions and ≤80% gene disruption efficiencies. Both the platform and our transfection procedure are easily adaptable for further preclinical studies and could potentially be used for clinical manufacturing of CAR T cells.
Collapse
Affiliation(s)
- Marina Mohr
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Nkerorema Damas
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Johanne Gudmand-Høyer
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Katrine Zeeberg
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Dominika Jedrzejczyk
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Arsenios Vlassis
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Martí Morera-Gómez
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Sara Pereira-Schoning
- Artisan
Bio, 363 Centennial Parkway,
Suite 310, Louisville, Colorado 80027, United States
| | - Urška Puš
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Anna Oliver-Almirall
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Tanja Lyholm Jensen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Roland Baumgartner
- Artisan
Bio, 363 Centennial Parkway,
Suite 310, Louisville, Colorado 80027, United States
| | - Brian Tate Weinert
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Ryan T. Gill
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan
Bio, 363 Centennial Parkway,
Suite 310, Louisville, Colorado 80027, United States
| | - Tanya Warnecke
- Artisan
Bio, 363 Centennial Parkway,
Suite 310, Louisville, Colorado 80027, United States
| |
Collapse
|
6
|
Fuchs RT, Curcuru JL, Mabuchi M, Noireterre A, Weigele PR, Sun Z, Robb GB. Characterization of Cme and Yme thermostable Cas12a orthologs. Commun Biol 2022; 5:325. [PMID: 35388146 PMCID: PMC8986864 DOI: 10.1038/s42003-022-03275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR-Cas12a proteins are RNA-guided endonucleases that cleave invading DNA containing target sequences adjacent to protospacer adjacent motifs (PAM). Cas12a orthologs have been repurposed for genome editing in non-native organisms by reprogramming them with guide RNAs to target specific sites in genomic DNA. After single-turnover dsDNA target cleavage, multiple-turnover, non-specific single-stranded DNA cleavage in trans is activated. This property has been utilized to develop in vitro assays to detect the presence of specific DNA target sequences. Most applications of Cas12a use one of three well-studied enzymes. Here, we characterize the in vitro activity of two previously unknown Cas12a orthologs. These enzymes are active at higher temperatures than widely used orthologs and have subtle differences in PAM preference, on-target cleavage, and trans nuclease activity. Together, our results enable refinement of Cas12a-based in vitro assays especially when elevated temperature is desirable.
Collapse
Affiliation(s)
- Ryan T Fuchs
- New England Biolabs Inc, Ipswich, MA, 01938, USA
| | | | | | - Audrey Noireterre
- New England Biolabs Inc, Ipswich, MA, 01938, USA
- Département de Biologie Cellulaire (BICEL), Université de Genève, CH - 1211, Genève 4, Switzerland
| | | | - Zhiyi Sun
- New England Biolabs Inc, Ipswich, MA, 01938, USA
| | - G Brett Robb
- New England Biolabs Inc, Ipswich, MA, 01938, USA.
| |
Collapse
|
7
|
Tran MH, Park H, Nobles CL, Karunadharma P, Pan L, Zhong G, Wang H, He W, Ou T, Crynen G, Sheptack K, Stiskin I, Mou H, Farzan M. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:40-53. [PMID: 33738137 PMCID: PMC7940699 DOI: 10.1016/j.omtn.2021.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
CRISPR effector proteins introduce double-stranded breaks into the mammalian genome, facilitating gene editing by non-homologous end-joining or homology-directed repair. Unlike the more commonly studied Cas9, the CRISPR effector protein Cas12a/Cpf1 recognizes a T-rich protospacer adjacent motif (PAM) and can process its own CRISPR RNA (crRNA) array, simplifying the use of multiple guide RNAs. We observed that the Cas12a ortholog of Lachnospiraceae bacterium MA2020 (Lb2Cas12a) edited mammalian genes with efficiencies comparable to those of AsCas12a and LbCas12a. Compared to these well-characterized Cas12a orthologs, Lb2Cas12a is smaller and recognizes a narrow set of PAM TTTV. We introduced two mutations into Lb2Cas12a, Q571K and C1003Y, that increased its cleavage efficiency for a range of target sequences beyond those of the commonly used Cas12a orthologs AsCas12a and LbCas12a. In addition to the canonical TTTV PAM, this variant, Lb2-KY, also efficiently cleaved target regions with CTTN PAMs. Finally, we demonstrated that Lb2-KY ribonucleoprotein (RNP) complexes edited two hemoglobin target regions useful for correcting common forms of sickle-cell anemia more efficiently than commercial AsCas12a RNP complexes. Thus, Lb2-KY has distinctive properties useful for modifying a range of clinically relevant targets in the human genome.
Collapse
Affiliation(s)
- Mai H Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hajeung Park
- X-ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Li Pan
- Genomics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Guocai Zhong
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haimin Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wenhui He
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tianling Ou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kelly Sheptack
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ian Stiskin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huihui Mou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|