1
|
Aouida M, Saifaldeen M, Al-Ansari DE, Taleb S, Hssain AA, Ramotar D. A CRISPR-based approach using dead Cas9-sgRNA to detect SARS-CoV-2. Front Mol Biosci 2023; 10:1201347. [PMID: 37388245 PMCID: PMC10300348 DOI: 10.3389/fmolb.2023.1201347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Rapid, highly specific, and robust diagnostic kits to detect viruses and pathogens are needed to control disease spread and transmission globally. Of the many different methods proposed to diagnose COVID-19 infection, CRISPR-based detection of nucleic acids tests are among the most prominent. Here, we describe a new way of using CRISPR/Cas systems as a rapid and highly specific tool to detect the SARS-CoV-2 virus using the in vitro dCas9-sgRNA-based technique. As a proof of concept, we used a synthetic DNA of the M gene, one of the SARS-CoV-2 virus genes, and demonstrated that we can specifically inactivate unique restriction enzyme sites on this gene using CRISPR/Cas multiplexing of dCas9-sgRNA-BbsI and dCas9-sgRNA-XbaI. These complexes recognize and bind to the target sequence spanning the BbsI and XbaI restriction enzyme sites, respectively, and protect the M gene from digestion by BbsI and/or XbaI. We further demonstrated that this approach can be used to detect the M gene when expressed in human cells and from individuals infected with SARS-CoV-2. We refer to this approach as dead Cas9 Protects Restriction Enzyme Sites, and believe that it has the potential to be applied as a diagnostic tool for many DNA/RNA pathogens.
Collapse
Affiliation(s)
- Mustapha Aouida
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Saifaldeen
- College of Health and Life Sciences, Division of Genomic and Precise Medicine, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dana E. Al-Ansari
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Taleb
- College of Health and Life Sciences, Division of Genomic and Precise Medicine, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Ait Hssain
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- Medical ICU, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M pro protease activity sensor. Commun Chem 2022; 5:117. [PMID: 36187754 PMCID: PMC9516532 DOI: 10.1038/s42004-022-00731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease, Mpro, is critical for SARS-CoV-2 replication and an appealing target for designing anti-SARS-CoV-2 agents. Therefore, there is a demand for the development of improved sensors to monitor its activity. Here, we report a pair of genetically encoded, bioluminescence resonance energy transfer (BRET)-based sensors for detecting Mpro proteolytic activity in live cells as well as in vitro. The sensors were generated by sandwiching peptides containing the Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and NanoLuc proteins. Co-expression of the sensors with Mpro in live cells resulted in their cleavage while mutation of the critical C145 residue (C145A) in Mpro completely abrogated their cleavage. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensors developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.
Collapse
Affiliation(s)
- Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Saad Rasool
- Division of Genomics and Precision Medicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - S. M. Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| |
Collapse
|
3
|
Shalaby KE, Aouida M, Gupta V, Ghanem SS, El-Agnaf OMA. Rapid Assessment of CRISPR Transfection Efficiency and Enrichment of CRISPR Induced Mutations Using a Dual-Fluorescent Stable Reporter System. Front Genome Ed 2022; 4:854866. [PMID: 35386234 PMCID: PMC8978543 DOI: 10.3389/fgeed.2022.854866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
The nuclease activity of the CRISPR-Cas9 system relies on the delivery of a CRISPR-associated protein 9 (Cas9) and a single guide RNA (sgRNA) against the target gene. CRISPR components are typically delivered to cells as either a Cas9/sgRNA ribonucleoprotein (RNP) complex or a plasmid encoding a Cas9 protein along with a sequence-specific sgRNA. Multiple transfection reagents are known to deliver CRISPR-Cas9 components, and delivery vectors are being developed for different purposes by several groups. Here, we repurposed a dual-fluorescence (RFP-GFP-GFP) reporter system to quantify the uptake level of the functional CRISPR-Cas9 components into cells and compare the efficiency of CRISPR delivery vectors. Using this system, we developed a novel and rapid cell-based microplate reader assay that makes possible real-time, rapid, and high throughput quantification of CRISPR nuclease activity. Cells stably expressing this dual-fluorescent reporter construct facilitated a direct quantification of the level of the internalized and functional CRISPR-Cas9 molecules into the cells without the need of co-transfecting fluorescently labeled reporter molecules. Additionally, targeting a reporter gene integrated into the genome recapitulates endogenous gene targeting. Thus, this reporter could be used to optimize various transfection conditions of CRISPR components, to evaluate and compare the efficiency of transfection agents, and to enrich cells containing desired CRISPR-induced mutations.
Collapse
Affiliation(s)
- Karim E. Shalaby
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S. Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| |
Collapse
|
4
|
Aouida M, Aljogol D, Ali R, Ramotar D. A simple protocol to isolate a single human cell PRDX1 knockout generated by CRISPR-Cas9 system. STAR Protoc 2022; 3:101216. [PMID: 35284843 PMCID: PMC8904610 DOI: 10.1016/j.xpro.2022.101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Here, we describe a protocol for human PRDX1 gene knockout cells using the CRISPR-Cas9 system. The protocol describes all the steps sequentially: (1) single-guide RNA design, cloning, and transfection; (2) gene editing evaluation by T7EI assay; (3) single-cell isolation; and (4) knockout verification to determine indels in one or both alleles by Sanger sequencing. This strategy is based on the efficiency of DNA editing, avoids antibiotic selection, and bypasses the need for cell sorting.
Collapse
Affiliation(s)
- Mustapha Aouida
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Dina Aljogol
- College of Health and Life Sciences, Division of Genomics and Precision Medicine, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Reem Ali
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
5
|
Wang X, Zhang L, Liang S, Yin Y, Wang P, Li Y, Chin WS, Xu J, Wen J. Enhancing the capability of Klebsiella pneumoniae to produce 1, 3-propanediol by overexpression and regulation through CRISPR-dCas9. Microb Biotechnol 2022; 15:2112-2125. [PMID: 35298861 PMCID: PMC9249332 DOI: 10.1111/1751-7915.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3‐propanediol (1, 3‐PDO). In general, the production of 1, 3‐PDO by wild‐type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3‐PDO by overexpressing in the reduction pathway and attenuating the by‐products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a‐P32‐dhaT with the original strain, the production of 1, 3‐PDO was increased by 19.7%, from 12.97 to 15.53 g l−1 (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by‐product pathway, respectively, using the CRISPR‐dCas9 system, and the optimal regulatory sites were selected following the 1, 3‐PDO production. As a result, the 1, 3‐PDO production by K.P. L1‐pRH2521 and K.P. B3‐pRH2521 reached up to 19.16 and 18.74 g l−1, which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3‐PDO. The 1, 3‐PDO production by K.P. L1‐B3‐PRH2521‐P32‐dhaT reached 57.85 g l−1 in a 7.5 l fermentation tank (with Na+ neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3‐PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by‐product synthesis in the CRISPR‐dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3‐PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research, #08-03, 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Zhang
- Dalian Petrochemical Research Institute of Sinopec, Dalian, 116000, China
| | - Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yicao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Wee Shong Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, #08-03, 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
dCas9 binding inhibits the initiation of base excision repair in vitro. DNA Repair (Amst) 2022; 109:103257. [PMID: 34847381 PMCID: PMC8748382 DOI: 10.1016/j.dnarep.2021.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Cas9 targets DNA during genome editing by forming an RNA:DNA heteroduplex (R-loop) between the Cas9-bound guide RNA and the targeted DNA strand. We have recently demonstrated that R-loop formation by catalytically inactive Cas9 (dCas9) is inherently mutagenic, in part, by promoting spontaneous cytosine deamination within the non-targeted single-stranded DNA of the dCas9-induced R-loop. However, the extent to which dCas9 binding and R-loop formation affect the subsequent repair of uracil lesions or other damaged DNA bases is unclear. Here, we show that DNA binding by dCas9 inhibits initiation of base excision repair (BER) for uracil lesions in vitro. Our data indicate that cleavage of uracil lesions by Uracil-DNA glycosylase (UDG) is generally inhibited at dCas9-bound DNA, in both the dCas9:sgRNA-bound target strand (TS) or the single-stranded non-target strand (NT). However, cleavage of a uracil lesion within the base editor window of the NT strand was less inhibited than at other locations, indicating that this site is more permissive to UDG activity. Furthermore, our data suggest that dCas9 binding to PAM sites can inhibit UDG activity. However, this non-specific inhibition can be relieved with the addition of an sgRNA lacking sequence complementarity to the DNA substrate. Moreover, we show that dCas9 binding also inhibits human single-strand selective monofunctional uracil-DNA glycosylase (SMUG1). Structural analysis of a Cas9-bound target site subsequently suggests a molecular mechanism for BER inhibition. Taken together, our results imply that dCas9 (or Cas9) binding may promote background mutagenesis by inhibiting the removal of DNA base lesions by BER.
Collapse
|