1
|
Liu G, Wang X, Su X, Ji S, Ma Z, Gao Y, Song X. The Development Potential of AuNPs-Based Lateral Flow Technology Combined with Other Advanced Technologies in POCT. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05190-8. [PMID: 39937412 DOI: 10.1007/s12010-025-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Currently, there is a demand for rapid, sensitive, low-cost, portable, and visualized testing technologies for point-of-care testing (POCT). However, most traditional testing methods face challenges such as long testing times, complicated operations, and high costs, limiting their implementation in resource-limited areas and hindering the fulfillment of POCT demands. Lateral flow assay (LFA) has emerged as an ideal detection technique for POCT, particularly when utilizing gold nanoparticles (AuNPs) as labels. This approach not only enables visualization with the naked eye but also reduces the need for expensive reading instruments. The technologies reviewed in this paper encompass integrated detection technology utilizing amplification technique and LFA, integrated detection technology utilizing clustered regularly interspaced short palindromic repeats (CRISPR) system and LFA, the utilization of surface-enhanced Raman spectroscopy (SERS) in LFA detection technique, the utilization of aptamers in LFA detection technique, and the utilization of DNA barcodes in LFA detection technique. By integrating these advanced techniques, there is significant potential to overcome the limitations of LFA, including low sensitivity, poor specificity, inability to quantify, and false positives, thereby enabling broader applications in resource-constrained settings. Additionally, this article comprehensively evaluates the strengths and weaknesses of each approach, underscoring the immense developmental potential of AuNPs-based LFA in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Guiping Liu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Xiaomeng Su
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Zelong Ma
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yimeng Gao
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China.
| |
Collapse
|
2
|
Yu L, Zhou Y, Shi XC, Wang GY, Fu ZH, Liang CG, Wang JZ. An amplification-free CRISPR-Cas12a assay for titer determination and composition analysis of the rAAV genome. Mol Ther Methods Clin Dev 2024; 32:101304. [PMID: 39193315 PMCID: PMC11347852 DOI: 10.1016/j.omtm.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
The viral genome titer is a crucial indicator for the clinical dosing, manufacturing, and analytical testing of recombinant adeno-associated virus (rAAV) gene therapy products. Although quantitative PCR and digital PCR are the common methods used for quantifying the rAAV genome titer, they are limited by inadequate accuracy and robustness. The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a biosensor is being increasingly used in virus detection; however, there is currently no report on its application in the titer determination of gene therapy products. In the present study, an amplification-free CRISPR-Cas12a assay was developed, optimized, and applied for rAAV genome titer determination. The assay demonstrated high precision and accuracy within the detection range of 4 × 109 and 1011 vg/mL. No significant difference was observed between the Cas12a and qPCR assay results (p < 0.05, t test). Moreover, Cas12a exhibited similar activity on both single-stranded and double-stranded DNA substrates. Based on this characteristic, the titers of positive-sense and negative-sense strands were determined separately, which revealed a significant difference between their titers for an in-house reference AAV5-IN. This study presents the inaugural report of a Cas12a assay developed for the titer determination and composition analysis of the rAAV genome.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Yong Zhou
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Xin-chang Shi
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Guang-yu Wang
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Zhi-hao Fu
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Cheng-gang Liang
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Jun-zhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| |
Collapse
|
3
|
Li S, Yin H, Zheng J, Wan Y, Wang K, Yang C, Zhou J, Zhao M, Yuan X, Wang J. DECODE: Contamination-Free Digital CRISPR Platform for Point-of-Care Detection of Viral DNA/RNA. ACS Sens 2024; 9:4256-4264. [PMID: 39031497 DOI: 10.1021/acssensors.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Rapid and precise nucleic acid testing at the point-of-care (POC) is essential for effective screening and management of infectious diseases. Current polymerase-based molecular diagnostics often suffer from potential cross-contamination issues, particularly in POC settings. Here, we introduce DECODE, a contamination-free nucleic acid detection platform integrating digital microfluidics (DMF) for nucleic acid extraction and a digital CRISPR amplification-free assay for pathogen detection. The digital CRISPR assay demonstrates sensitivity, detecting target DNA and RNA in the reaction mixture at concentrations of 10 and 5 copies/μL, respectively. Leveraging DMF-extracted samples enhances the performance of the digital CRISPR amplification-free assay. DECODE offers a sample-to-result workflow of 75 min using compact devices. Validation studies using clinical samples confirm DECODE's robust performance, achieving 100% sensitivity and specificity in detecting HPV18 from cervical epithelial cells and influenza A from nasal swabs. DECODE represents a versatile, contamination-free detection platform poised to enhance integrated public health surveillance efforts.
Collapse
Affiliation(s)
- Sheng Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Haofan Yin
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiale Zheng
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong 510000, China
| | - Yunzhu Wan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ke Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Meng Zhao
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong 510000, China
| | - Xiaopeng Yuan
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Zhou Z, Lau CH, Wang J, Guo R, Tong S, Li J, Dong W, Huang Z, Wang T, Huang X, Yu Z, Wei C, Chen G, Xue H, Zhu H. Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a. ACS OMEGA 2024; 9:28866-28878. [PMID: 38973832 PMCID: PMC11223203 DOI: 10.1021/acsomega.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.
Collapse
Affiliation(s)
- Zhongqi Zhou
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Cia-Hin Lau
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Jianchao Wang
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Rui Guo
- Animal
Husbandry and Veterinary Institute, Hubei
Academy of Agricultural Science, Wuhan, Hubei 430064, China
- Key
Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Wuhan, Hubei 430064, China
| | - Sheng Tong
- Department
of Biomedical Engineering, University of
Kentucky, Lexington, Kentucky 40506-0503, United States
| | - Jiaqi Li
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Wenjiao Dong
- Department
of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhihao Huang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Tao Wang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Xiaojun Huang
- Xiamen
Fly Gene Biomedical Technology CO., LTD, Biomedical Industrial Park, Xiamen, Fujian 361000, China
| | - Ziqing Yu
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chiju Wei
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Gang Chen
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Hongman Xue
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haibao Zhu
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| |
Collapse
|
5
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|