1
|
Shah VN, Peters AL, Umpierrez GE, Sherr JL, Akturk HK, Aleppo G, Bally L, Cengiz E, Cinar A, Dungan K, Fabris C, Jacobs PG, Lal RA, Mader JK, Masharani U, Prahalad P, Schmidt S, Zijlstra E, Ho CN, Ayers AT, Tian T, Aaron RE, Klonoff DC. Consensus Report on Glucagon-Like Peptide-1 Receptor Agonists as Adjunctive Treatment for Individuals With Type 1 Diabetes Using an Automated Insulin Delivery System. J Diabetes Sci Technol 2025; 19:191-216. [PMID: 39517127 PMCID: PMC11571606 DOI: 10.1177/19322968241291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
With increasing prevalence of obesity and cardiovascular diseases, there is a growing interest in the use of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as an adjunct therapy in type 1 diabetes (T1D). The GLP-1RAs are currently not approved by the US Food and Drug Administration for the treatment of T1D in the absence of randomized controlled trials documenting efficacy and safety of these agents in this population. The Diabetes Technology Society convened a series of three consensus meetings of clinicians and researchers with expertise in diabetes technology, GLP-1RA therapy, and T1D management. The project was aimed at synthesizing current literature and providing conclusions on the use of GLP-1RA therapy as an adjunct to automated insulin delivery (AID) systems in adults with T1D. The expert panel members met virtually three times on January 17, 2024, and April 24, 2024, and August 14, 2024, to discuss topics ranging from physiology and outcomes of GLP-1RAs in T1D to limitations of current sensors, algorithms, and insulin for AID systems. The panelists also identified research gaps and future directions for research. The panelists voted to in favor of 31 recommendations. This report presents the consensus opinions of the participants that, in adults with T1D using AID systems, GLP-1RAs have the potential to (1) provide effective adjunct therapy and (2) improve glycemic and metabolic outcomes without increasing the risk of severe hypoglycemia or diabetic ketoacidosis.
Collapse
Affiliation(s)
- Viral N. Shah
- Division of Endocrinology & Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne L. Peters
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | | | - Halis Kaan Akturk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lia Bally
- Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Eda Cengiz
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kathleen Dungan
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chiara Fabris
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Peter G. Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Rayhan A. Lal
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Umesh Masharani
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Priya Prahalad
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Cindy N. Ho
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
2
|
Schmidt S, Frandsen CS, Dejgaard TF, Vistisen D, Halldórsson T, Olsen SF, Jensen JEB, Madsbad S, Andersen HU, Nørgaard K. Liraglutide changes body composition and lowers added sugar intake in overweight persons with insulin pump-treated type 1 diabetes. Diabetes Obes Metab 2022; 24:212-220. [PMID: 34595827 DOI: 10.1111/dom.14567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
AIMS To present secondary outcome analyses of liraglutide treatment in overweight adults with insulin pump-treated type 1 diabetes (T1D), focusing on changes in body composition and dimensions, and to evaluate changes in food intake to identify potential dietary drivers of liraglutide-associated weight loss. MATERIALS AND METHODS A 26-week randomized placebo-controlled study was conducted to investigate the efficacy and safety of liraglutide 1.8 mg daily in 44 overweight adults with insulin pump-treated T1D and glucose levels above target, and demonstrated significant glycated haemoglobin (HbA1c)- and body weight-reducing effects. For secondary outcome analysis, dual X-ray absorptiometry scans were completed at Weeks 0 and 26, and questionnaire-based food frequency recordings were obtained at Weeks 0, 13 and 26 to characterize liraglutide-induced changes in body composition and food intake. RESULTS Total fat and lean body mass decreased in liraglutide-treated participants (fat mass -4.6 kg [95% confidence interval {CI} -5.7; -3.5], P < 0.001; lean mass -2.5 kg [95% CI -3.2;-1.7], P < 0.001), but remained stable in placebo-treated participants (fat mass -0.3 kg [95% CI -1.3;0.8], P = 0.604; lean mass 0.0 kg [95% CI -0.7;0.7]; P = 0.965 [between-group P values <0.001]). Participants reduced their energy intake numerically more in the liraglutide arm (-1.1 MJ [95% CI -2.0;-0.02], P = 0.02) than in the placebo arm (-0.9 MJ [95% CI -2.0;0.1], P = 0.22), but the between-group difference was statistically insignificant (P = 0.42). However, energy derived from added sugars decreased by 27% in the liraglutide arm compared with an increase of 14% in the placebo arm (P = 0.004). CONCLUSIONS Liraglutide lowered fat and lean body mass compared with placebo. Further, liraglutide reduced intake of added sugars. However, no significant difference in total daily energy intake was detected between liraglutide- and placebo-treated participants.
Collapse
Affiliation(s)
- Signe Schmidt
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Christian S Frandsen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Rigshospitalet, Glostrup, Denmark
| | - Thomas F Dejgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Centre for Clinical Metabolic Research, Copenhagen University Hospital Gentofte, Gentofte, Denmark
| | - Dorte Vistisen
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thórhallur Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sjudur F Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jens-Erik B Jensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik U Andersen
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kirsten Nørgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Cai X, Lin C, Yang W, Nie L, Ji L. Non-Insulin Antidiabetes Treatment in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab J 2021; 45:312-325. [PMID: 33705649 PMCID: PMC8164953 DOI: 10.4093/dmj.2020.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
In order to evaluate the efficacy and side effects of the non-insulin antidiabetes medications as an adjunct treatment in type 1 diabetes mellitus (T1DM), we conducted systematic searches in MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials for randomized controlled trials published between the date of inception and March 2020 to produce a systematic review and meta-analysis. Overall, 57 studies were included. Compared with placebo, antidiabetes agents in adjunct to insulin treatment resulted in significant reduction in glycosylated hemoglobin (weighted mean difference [WMD], -0.30%; 95% confidence interval [CI], -0.34 to -0.25%; P<0.01) and body weight (WMD, -2.15 kg; 95% CI, -2.77 to -1.53 kg; P<0.01), and required a significantly lower dosage of insulin (WMD, -5.17 unit/day; 95% CI, -6.77 to -3.57 unit/day; P<0.01). Compared with placebo, antidiabetes agents in adjunct to insulin treatment increased the risk of hypoglycemia (relative risk [RR], 1.04; 95% CI, 1.01 to 1.08; P=0.02) and gastrointestinal side effects (RR, 1.99; 95% CI, 1.61 to 2.46; P<0.01) in patients with T1DM. Compared with placebo, the use of non-insulin antidiabetes agents in addition to insulin could lead to glycemic improvement, weight control and lower insulin dosage, while they might be associated with increased risks of hypoglycemia and gastrointestinal side effects in patients with T1DM.
Collapse
Affiliation(s)
- Xiaoling Cai
- Department of Endocrine and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrine and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrine and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Lin Nie
- Department of Endocrine and Metabolism, Beijing Airport Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrine and Metabolism, Peking University People’s Hospital, Beijing, China
- Corresponding author: Linong Ji https://orcid.org/0000-0002-3262-2168 Department of Endocrinology and Metabolism, Peking University People’s Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China E-mail:
| |
Collapse
|
4
|
Wang B, Olsen JI, Laursen BW, Navarro Poulsen JC, Bols M. Determination of protonation states of iminosugar-enzyme complexes using photoinduced electron transfer. Chem Sci 2017; 8:7383-7393. [PMID: 29163889 PMCID: PMC5672842 DOI: 10.1039/c7sc01540b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
A series of N-alkylated analogues of 1-deoxynojirimycin containing a fluorescent 10-chloro-9-anthracene group in the N-alkyl substituent were prepared. The anthracene group acted as a reporting group for protonation at the nitrogen in the iminosugar because an unprotonated amine was found to quench fluorescence by photoinduced electron transfer. The new compounds were found to inhibit β-glucosidase from Phanerochaete chrysosporium and α-glucosidase from Aspergillus niger, with Ki values in the low micro- to nanomolar range. Fluorescence and inhibition versus pH studies of the β-glucosidase-iminosugar complexes revealed that the amino group in the inhibitor is unprotonated when bound, while one of the active site carboxylates is protonated.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen Ø , Denmark . ; Tel: +45 35320160
| | - Jacob Ingemar Olsen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen Ø , Denmark . ; Tel: +45 35320160
| | - Bo W Laursen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen Ø , Denmark . ; Tel: +45 35320160
| | - Jens Christian Navarro Poulsen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen Ø , Denmark . ; Tel: +45 35320160
| | - Mikael Bols
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen Ø , Denmark . ; Tel: +45 35320160
| |
Collapse
|
5
|
Xiao Y, Sun H, Du J. Sugar-Breathing Glycopolymersomes for Regulating Glucose Level. J Am Chem Soc 2017; 139:7640-7647. [DOI: 10.1021/jacs.7b03219] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yufen Xiao
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
6
|
The progress of luminescent assay in clinical diagnosis and treatment of diabetes mellitus. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Abstract
Many patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance and peripheral hyperinsulinemia. Therefore, the need exists for delivering insulin in a minimally invasive or noninvasive and in most physiological way. Inhaled insulin was the first approved noninvasive and alternative way to deliver insulin, but it has been withdrawn from the market. Technologies are being explored to make the noninvasive delivery of insulin possible. Some of the routes of insulin administration that are under investigation are oral, buccal, nasal, peritoneal and transdermal. This review article focuses on the past, present and future of various insulin delivery techniques. This article has focused on different possible routes of insulin administration with its advantages and limitation and possible scope for the new drug development.
Collapse
Affiliation(s)
- Rima B Shah
- Department of Pharmacology, GMERS Medial College, Gandhinagar, Gujarat, India
| | - Manhar Patel
- Brain Research and Intervention Center, University of Illinois, Chicago, USA
| | - David M Maahs
- Barbara Davis Center for Diabetes, University of Colorado, Denver, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado, Denver, USA
| |
Collapse
|
8
|
Rekers NV, von Herrath MG, Wesley JD. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success. Clin Immunol 2015; 161:37-43. [PMID: 26122172 DOI: 10.1016/j.clim.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
The standard of care (SoC) for Type 1 diabetes (T1D) today is much the same as it was in the early 1920s, simply with more insulin options-fast-acting, slow-acting, injectable, and inhalable insulins. However, these well-tolerated treatments only manage the symptoms and complications, but do nothing to halt the underlying immune response. There is an unmet need for better treatment options for T1D that address all aspects of the disease. For decades, we have successfully treated T1D in preclinical animal models with immune-modifying therapies that have not demonstrated comparable efficacy in humans. The path to bringing such options to the clinic will depend on the implementation and standard inclusion of biomarkers of immune and therapeutic efficacy in T1D clinical trials, and dictate if we can create a new SoC that treats the underlying autoimmunity as well as the symptoms it causes.
Collapse
Affiliation(s)
- Niels V Rekers
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | - Johnna D Wesley
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA.
| |
Collapse
|
9
|
An artificial pancreas for automated blood glucose control in patients with Type 1 diabetes. Ther Deliv 2015; 6:609-19. [DOI: 10.4155/tde.15.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Automated glucose control in patients with Type 1 diabetes is much-coveted by patients, relatives and healthcare professionals. It is the expectation that a system for automated control, also know as an artificial pancreas, will improve glucose control, reduce the risk of diabetes complications and markedly improve patient quality of life. An artificial pancreas consists of portable devices for glucose sensing and insulin delivery which are controlled by an algorithm residing on a computer. The technology is still under development and currently no artificial pancreas is commercially available. This review gives an introduction to recent progress, challenges and future prospects within the field of artificial pancreas research.
Collapse
|
10
|
Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol Ther 2014; 16:477-90. [PMID: 25072271 DOI: 10.1089/dia.2014.0193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intensive insulin therapy (IIT) has been shown to reduce micro- and macrovascular complications in patients with type 1 diabetes mellitus (T1DM). However, IIT is associated with a significant increase in severe hypoglycemic events, resulting in increased morbidity and mortality. Optimization of glycemic control without hypoglycemia (especially nocturnal) should be the next major goal for subjects on insulin treatment. The use of insulin pumps along with continuous glucose monitors (CGMs) has made it easier but requires significant resources and patient education. Research is ongoing to close the loop by integrating the pump and the CGM using different algorithms. The currently available closed-loop system is the threshold suspend. Steps needed to achieve a near-perfect closed-loop are (1) a control-to-range system that will reduce the incidence and/or severity of hyper- and/or hypoglycemia by adjusting the insulin dose and (2) a control-to-target system, a fully automated or hybrid system that sets target glucose levels to individual needs and maintains glucose levels throughout the day using insulin (unihormonal) alone or with other hormones such as glucagon or possibly pramlintide (bihormonal). Future research is also focusing on better insulin delivery devices (pumps), more accurate CGMs, better predictive algorithms, and ultra-rapid-acting insulin analogs to make the closed-loop system as physiological as possible.
Collapse
Affiliation(s)
- Viral N Shah
- 1 Barbara Davis Center for Diabetes, University of Colorado Denver , Aurora, Colorado
| | | | | | | |
Collapse
|