1
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Interactomics of CXXC proteins involved in epigenetic regulation of gene expression. BIOMEDITSINSKAYA KHIMIYA 2022; 68:339-351. [DOI: 10.18097/pbmc20226805339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of gene expression is an extremely complex and multicomponent biological phenomenon. Proteins containing the CXXC-domain “zinc fingers” (CXXC-proteins) are master regulators of expression of many genes and have conserved functions of methylation of DNA bases and histone proteins. CXXC proteins function as a part of multiprotein complexes, which indicates the fundamental importance of studying post-translational regulation through modulation of the protein-protein interaction spectrum (PPI) in both normal and pathological conditions. In this paper we discuss general aspects of the involvement of CXXC proteins and their protein partners in neoplastic processes, both from the literature data and our own studies. Special attention is paid to recent data on the particular interactomics of the CFP1 protein encoded by the CXXC1 gene located on the human chromosome 18. CFP1 is devoid of enzymatic activity and implements epigenetic regulation of expression through binding to chromatin and a certain spectrum of PPIs.
Collapse
Affiliation(s)
- P.V. Ershov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A.S. Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Ki BS, Shim SH, Park C, Yoo H, La H, Lee OH, Kwon Y, Skalnik DG, Okada Y, Yoon HG, Kim JH, Hong K, Choi Y. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1098-1108. [PMID: 35918532 PMCID: PMC9440128 DOI: 10.1038/s12276-022-00813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility. Details of the role of a protein in the development of sperm cells in mice could lead to new understanding of sterility in men. An international research team led by Youngsok Choi and Kwonho Hong at Konkuk University, Seoul, South Korea, investigated the role of protein Cfp1, which they found to be required for sperm formation in mice. The protein is a component of an enzyme complex that transfers methyl groups (CH3) onto other proteins involved in controlling gene activity. The researchers identified key aspects of the mechanism by which Cfp1 controls the activity of genes essential for sperm formation to proceed normally. Absence of Cfp1 specifically interferes with the process of meiosis, which generates sperm cells containing only one copy of each chromosome instead of the two copies found in other cells.
Collapse
Affiliation(s)
- Byeong Seong Ki
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Yang LQ, Hu HY, Han Y, Tang ZY, Gao J, Zhou QY, Liu YX, Chen HS, Xu TN, Ao L, Xu Y, Che X, Jiang YB, Xu CW, Zhang XC, Jiang YX, Heger M, Wang XM, Cheng SQ, Pan WW. CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription. Cancer Gene Ther 2022; 29:1895-1907. [PMID: 35864225 PMCID: PMC9750859 DOI: 10.1038/s41417-022-00503-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations have been functionally linked to ovarian cancer development and occurrence. The CXXC zinc finger protein 1 (CFP1) is an epigenetic regulator involved in DNA methylation and histone modification in mammalian cells. However, its role in ovarian cancer cells is unknown. Here, we show that CFP1 protein is highly expressed in human ovarian cancer tissues. Loss of CFP1 inhibited the growth of human ovarian cancer cells, promoted apoptosis, and increased senescence. CFP1 knockdown resulted in reduced levels of SETD1 (a CFP1 partner) and histone H3 trimethylation at the fourth lysine residue (H3K4me3). RNA-sequencing revealed that deletion of CFP1 resulted in mRNA reduction of bone marrow stromal cell antigen 2 (BST2). Bioinformatics analysis and chromatin immunoprecipitation showed that CFP1 binds to the promoter of BST2 and regulates its transcription directly. Overexpression of BST2 rescued the growth inhibitory effect of CFP1 loss. Furthermore, depletion of cullin-RING ubiquitin ligases 4 (CRL4) components ROC1 or CUL4A had significantly inhibited the expression of CFP1 and BST2 similar to MLN4924 treatment that blocked cullin neddylation and inactivated CRL4s. In conclusion, CFP1 promotes ovarian cancer cell proliferation and apoptosis by regulating the transcription of BST2, and the expression of CFP1 was affected by CRL4 ubiquitin ligase complex.
Collapse
Affiliation(s)
- Liu-Qing Yang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Han-Yin Hu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yao Han
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Ze-Yi Tang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Jie Gao
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Qi-Yin Zhou
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yi-Xuan Liu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Hao-Sa Chen
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Tu-Nan Xu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Lei Ao
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Ying Xu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Xuan Che
- grid.411870.b0000 0001 0063 8301Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, 314001 Zhejiang Province China
| | - Ya-Bo Jiang
- grid.73113.370000 0004 0369 1660Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438 China
| | - Chun-Wei Xu
- grid.256112.30000 0004 1797 9307Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 350014 Fuzhou, Fujian China
| | - Xian-Chao Zhang
- grid.411870.b0000 0001 0063 8301Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yu-Xin Jiang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Michal Heger
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China ,grid.5477.10000000120346234Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ,grid.5645.2000000040459992XLaboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Xiao-Min Wang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Shu-Qun Cheng
- grid.73113.370000 0004 0369 1660Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438 China ,grid.411870.b0000 0001 0063 8301G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Wei-Wei Pan
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China ,grid.411870.b0000 0001 0063 8301G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| |
Collapse
|
4
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
5
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
6
|
Yang Y, Yang Y, Chan K, Couture JF. Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB J 2021; 35:e21790. [PMID: 34320252 DOI: 10.1096/fj.202100427r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
CXXC Zinc finger protein 1 (CFP1) is a multitasking protein playing essential roles during various developmental processes. Its ability to interact with several proteins contribute to several epigenetic events. Here, we review CFP1's functions and its impact on DNA methylation and the post-translational modification of histone proteins such as lysine acetylation and methylation. We will also discuss the potential role of CFP1 in carcinogenesis and the impact of the mutations identified in patients suffering from various cancers.
Collapse
Affiliation(s)
- Yidai Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yaqing Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kin Chan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Liu K, Min J. Structural Basis for the Recognition of Non-methylated DNA by the CXXC Domain. J Mol Biol 2020:S0022-2836(19)30591-1. [DOI: 10.1016/j.jmb.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
8
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 789] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
9
|
Chun KT, Li B, Dobrota E, Tate C, Lee JH, Khan S, Haneline L, HogenEsch H, Skalnik DG. The epigenetic regulator CXXC finger protein 1 is essential for murine hematopoiesis. PLoS One 2014; 9:e113745. [PMID: 25470594 PMCID: PMC4254612 DOI: 10.1371/journal.pone.0113745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Abstract
CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the Lin- Sca-1+ c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.
Collapse
Affiliation(s)
- Kristin T Chun
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Biology Department, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, Indiana, United States of America
| | - Binghui Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Erika Dobrota
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Courtney Tate
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jeong-Heon Lee
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shehnaz Khan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Laura Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Departments of Microbiology & Immunology and Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - David G Skalnik
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Biology Department, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, Indiana, United States of America
| |
Collapse
|
10
|
Clouaire T, Webb S, Bird A. Cfp1 is required for gene expression-dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biol 2014; 15:451. [PMID: 25201068 PMCID: PMC4189735 DOI: 10.1186/s13059-014-0451-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Trimethylation of histone H3 lysine 4 (H3K4me3) accumulates at promoters in a gene activity-dependent manner. The Set1 complex is responsible for most H3K4me3 in somatic cells and contains the conserved subunit Cfp1, which is implicated in targeting the Set1 complex to CpG islands in mammals. In mouse embryonic stem cells, Cfp1 is necessary for H3K4me3 accumulation at constitutively active gene promoters, but is not required to maintain steady-state transcription of the associated gene. RESULTS Here we show that Cfp1 is instrumental for targeting H3K4me3 to promoters upon rapid transcriptional induction in response to external stimuli. Surprisingly, H3K4me3 accumulation is not required to ensure appropriate transcriptional output but rather plays gene-specific roles. We also show that Cfp1-dependent H3K4me3 deposition contributes to H3K9 acetylation genome-wide, suggesting that Cfp1-dependent H3K4me3 regulates overall H3K9 acetylation dynamics and is necessary for histone acetyl transferase recruitment. Finally, we observe increased antisense transcription at the start and end of genes that require Cfp1 for accurate deposition of H3K4me3 and H3K9ac. CONCLUSIONS Our results assign a key role for Cfp1 in establishing a complex active promoter chromatin state and shed light on how chromatin signaling pathways provide context-dependent transcriptional outcomes.
Collapse
|
11
|
Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 2012; 26:1714-28. [PMID: 22855832 DOI: 10.1101/gad.194209.112] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trimethylation of histone H3 Lys 4 (H3K4me3) is a mark of active and poised promoters. The Set1 complex is responsible for most somatic H3K4me3 and contains the conserved subunit CxxC finger protein 1 (Cfp1), which binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). Here we report that Cfp1 plays unanticipated roles in organizing genome-wide H3K4me3 in embryonic stem cells. Cfp1 deficiency caused two contrasting phenotypes: drastic loss of H3K4me3 at expressed CGI-associated genes, with minimal consequences for transcription, and creation of "ectopic" H3K4me3 peaks at numerous regulatory regions. DNA binding by Cfp1 was dispensable for targeting H3K4me3 to active genes but was required to prevent ectopic H3K4me3 peaks. The presence of ectopic peaks at enhancers often coincided with increased expression of nearby genes. This suggests that CpG targeting prevents "leakage" of H3K4me3 to inappropriate chromatin compartments. Our results demonstrate that Cfp1 is a specificity factor that integrates multiple signals, including promoter CpG content and gene activity, to regulate genome-wide patterns of H3K4me3.
Collapse
|
12
|
Abstract
Recently, 5-hydroxymethylcytosine (5-hmC), the 6th base of DNA, was discovered as the product of the hydroxylation of 5-methylcytosine (5-mC) by the ten-eleven translocation (TET) oncogene family members. One of them, TET oncogene family member 2 (TET2), is mutated in a variety of myeloid malignancies, including in 15% of myeloproliferative neoplasms (MPNs). Recent studies tried to go further into the biological and epigenetic function of TET2 protein and 5-hmC marks in the pathogenesis of myeloid malignancies. Although its precise function remains partially unknown, TET2 appears to be an important regulator of hematopoietic stem cell biology. In both mouse and human cells, its inactivation leads to a dramatic deregulation of hematopoiesis that ultimately triggers blood malignancies. Understanding this leukemogenic process will provide tools to develop new epigenetic therapies against blood cancers.
Collapse
Affiliation(s)
- Elodie Pronier
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Institut Gustave Roussy, Université Paris Sud (Paris 11), Villejuif, France
| | | |
Collapse
|
13
|
The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2011; 2:227. [PMID: 21407193 PMCID: PMC3072069 DOI: 10.1038/ncomms1237] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/09/2011] [Indexed: 12/18/2022] Open
Abstract
CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif.
Collapse
|
14
|
Abstract
AbstractNumerous epigenetic modifications have been identified and correlated with transcriptionally active euchromatin or repressed heterochromatin and many enzymes responsible for the addition and removal of these marks have been characterized. However, less is known regarding how these enzymes are regulated and targeted to appropriate genomic locations. Mammalian CXXC finger protein 1 is an epigenetic regulator that was originally identified as a protein that binds specifically to any DNA sequence containing an unmethylated CpG dinucleotide. Mouse embryos lacking CXXC finger protein 1 die prior to gastrulation, and embryonic stem cells lacking CXXC finger protein 1 are viable but are unable to achieve cellular differentiation and lineage commitment. CXXC finger protein 1 is a regulator of both cytosine and histone methylation. It physically interacts with DNA methyltransferase 1 and facilitates maintenance cytosine methylation. Rescue studies reveal that CXXC finger protein 1 contains redundant functional domains that are sufficient to support cellular differentiation and proper levels of cytosine methylation. CXXC finger protein 1 is also a component of the Setd1 histone H3-Lys4 methyltransferase complexes and functions to target these enzymes to unmethylated CpG islands. Depletion of CXXC finger protein 1 leads to loss of histone H3-Lys4 tri-methylation at CpG islands and inappropriate drifting of this euchromatin mark into areas of hetero-chromatin. Thus, one function of CXXC finger protein 1 is to serve as an effector protein that interprets cytosine methylation patterns and facilitates crosstalk with histone-modifying enzymes.
Collapse
Affiliation(s)
- David G. Skalnik
- 1Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 2009; 16:47-53. [PMID: 19463963 DOI: 10.1016/j.anaerobe.2009.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 04/20/2009] [Accepted: 04/30/2009] [Indexed: 11/23/2022]
Abstract
Separation of bacterial DNA from human DNA in clinical samples may have an important impact on downstream applications, involving microbial diagnostic systems. We evaluated two commercially available reagents (MolYsis), Molzym GmbH & Co. KG, Bremen and Pureprove, SIRS-Lab GmbH, Jena, both Germany) for their potential to isolate and purify bacterial DNA from human DNA. We chose oral samples, which usually contain very high amounts of both human and bacterial cells. Three different DNA preparations each were made from eight caries and eight periodontal specimens using the two reagents above and a conventional DNA extraction strategy as reference. Based on target-specific real-time-quantitative PCR assays we compared the reduction of human DNA versus loss of bacterial DNA. Human DNA was monitored by targeting the beta-2-microglobulin gene, while bacteria were monitored by targeting 16S rDNA (total bacteria and Porphyromonas gingivalis) or the glycosyltransferase gene (Streptococcus mutans). We found that in most cases at least 90% of human DNA could successfully be removed, with complete removal in eight of 16 cases using MolYsis, and two (of 16) cases using Pureprove. Conversely, detection of bacterial DNA was possible in all cases with a recovery rate generally ranging from 35% to 50%. In conclusion, both strategies have the potential to reduce background interference from the host DNA which may be of remarkable value for nucleic-acid based microbial diagnostic systems.
Collapse
|
16
|
CXXC finger protein 1 contains redundant functional domains that support embryonic stem cell cytosine methylation, histone methylation, and differentiation. Mol Cell Biol 2009; 29:3817-31. [PMID: 19433449 DOI: 10.1128/mcb.00243-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CXXC finger protein 1 (Cfp1) is a regulator of both cytosine methylation and histone methylation. Murine embryonic stem (ES) cells lacking Cfp1 exhibit a decreased plating efficiency, decreased cytosine methylation, elevated global levels of histone H3-Lys4 trimethylation, and a failure to differentiate in vitro. Remarkably, transfection studies reveal that expression of either the amino half of Cfp1 (amino acids 1 to 367 [Cfp1(1-367)]) or the carboxyl half of Cfp1 (Cfp1(361-656)) is sufficient to correct all of the defects observed with ES cells that lack Cfp1. However, a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the Cfp1(1-367) fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1 histone H3-Lys4 methyltransferase complexes ablates the rescue activity of the Cfp1(361-656) fragment. Introduction of both the C169A and C375A point mutations ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either the Cfp1 DNA-binding domain or Setd1 interaction domain is required for Cfp1 rescue activity, and they illustrate the functional complexity of this critical epigenetic regulator. A model is presented for how epigenetic cross talk may explain the finding of redundant functional domains within Cfp1.
Collapse
|
17
|
Butler JS, Lee JH, Skalnik DG. CFP1 interacts with DNMT1 independently of association with the Setd1 Histone H3K4 methyltransferase complexes. DNA Cell Biol 2008; 27:533-43. [PMID: 18680430 PMCID: PMC2754740 DOI: 10.1089/dna.2007.0714] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/09/2008] [Accepted: 05/29/2008] [Indexed: 12/21/2022] Open
Abstract
CXXC finger protein 1 (CFP1) is a component of the Setd1A and Setd1B methyltransferase complexes, localizes to euchromatic regions of the genome, and specifically binds unmethylated CpG dinucleotides in DNA. Murine embryos lacking CFP1 exhibit peri-implantation lethality, a developmental time that correlates with global epigenetic reprogramming. CFP1-deficient embryonic stem (ES) cells exhibit a 70% reduction in global cytosine methylation and a 60% decrease in maintenance DNA methyltransferase (DNMT1) activity. DNMT1 protein level is reduced 50% in CFP1-deficient ES cells. Experiments were performed to investigate the role of CFP1 in regulating maintenance cytosine methylation. Coimmunoprecipitation experiments reveal that endogenous DNMT1 and CFP1 interact in vivo. Protein regions required for the interaction between DNMT1 and CFP1 were mapped. Amino acids 169-493 and 970-1617 of DNMT1 are each sufficient for interaction with CFP1. Three regions spanning the CFP1 protein, amino acids 1-123, 103-367, and 361-656, are each sufficient for interaction with DNMT1. Interestingly, a single-point mutation (C375A) within CFP1 that abolishes the interaction with the Setd1A and Setd1B histone H3K4 methyltransferase complexes does not disrupt the interaction between CFP1 and DNMT1. This result indicates that CFP1 intersects the cytosine methylation machinery independently of its association with the Setd1 complexes.
Collapse
Affiliation(s)
- Jill Sergesketter Butler
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|