1
|
Lin K, Jia X, Zhang X, Li W, Wang B, Wang Z, Xue X, Fan X, Ma Z. Synthesis, characterization, antiproliferative activity and DNA binding calculation of substituted-phenyl-terpyridine copper(II) nitrate complexes. J Inorg Biochem 2023; 250:112418. [PMID: 39492401 DOI: 10.1016/j.jinorgbio.2023.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Ten 4'- (R-phenyl) -2,2': 6', 2' - terpyridine ligands (R = hydrogen (L1), hydroxyl (L2), methoxyl (L3), methylsulfonyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), and iodo (L10)) were synthesized. The reaction of these ligands with copper(II) nitrate led to complexes 1-10. The characterization of 1-10 was carried out by means of mass spectrometry, elemental analysis, infrared spectroscopy and X-ray single crystal diffraction. Four cell lines including esophageal cancer cell line (Eca-109), human liver cancer cell line (Bel-7402), human breast cancer cell line (SIHa) and human normal liver cell line (HL-7702) were selected to carry out antiproliferation and cytotoxicity experiments in vitro. The results showed that the complexes have strong inhibitory ability on the growth of tumor cells. In order to study the anticancer mechanism of the complexes, the binding mode and binding ability of the complexes with DNA were further determined and discussed with UV-Vis spectroscopy and circular dichroism. The effects of the lowest binding energy and hydrogen bond on the binding were studied using molecular docking calculation.
Collapse
Affiliation(s)
- Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xueying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Weikeduo Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, Guangxi, People's Republic of China.
| | - Xiaosu Fan
- School of Agriculture, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Abdel Hakiem AF, El-Sagheir AMK, Draz ME, Mohamed NA, Aboraia AS. Assessment of binding interaction to salmon sperm DNA of two antiviral agents and ecofriendly nanoparticles: comprehensive spectroscopic study. BMC Chem 2023; 17:39. [PMID: 37076904 PMCID: PMC10114480 DOI: 10.1186/s13065-023-00952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
The direct binding of antiviral agents; Daclatasvir and valacyclovir and green synthesized nanoparticles to salmon sperm DNA have been assessed in a comparative study. The nanoparticles were synthesized by the hydrothermal autoclave method and have been fully characterized. The interactive behavior and competitive binding of the analytes to DNA in addition to the thermodynamic properties were deeply investigated by the UV-visible spectroscopy. The binding constants were monitored in the physiological pH conditions to be 1.65 × 106, 4.92 × 105 and 3.12 × 105 for daclatasvir,valacyclovir and quantum dots, respectively. The significant changes in the spectral features of all analytes have proven intercalative binding. The competitive study has confirmed that, daclatasvir, valacyclovir, and the quantum dots have exhibited groove binding. All analytes have shown good entropy and enthalpy values indicating stable interactions. The electrostatic and non-electrostatic kinetic parameters have been determined through studying the binding interactions at different concentrations of KCl solutions. A molecular modelling study has been applied to demonstrate the binding interactions and their mechanisms. The obtained results were complementary and afforded new eras for the therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| | | | - Mohammed E Draz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Niveen A Mohamed
- Department of Pharmaceutical Chemistry, Unaizah College of Pharmacy, Qassim University, Unaizah, 5888, Saudi Arabia
| | - Ahmed Safwat Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
3
|
Wang Z, Li J, Liu R, Jia X, Liu H, Xie T, Chen H, Pan L, Ma Z. Synthesis, characterization and anticancer properties: A series of highly selective palladium(II) substituted-terpyridine complexes. J Inorg Biochem 2023; 244:112219. [PMID: 37058991 DOI: 10.1016/j.jinorgbio.2023.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Ten new palladium(II) complexes [PdCl(L1-10)]Cl have been synthesized by the reaction of palladium(II) chloride and ten 4'-(substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen(L1), p-hydroxyl(L2), m-hydroxyl (L3), o-hydroxyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), or iodo (L10). Their structures were confirmed by FT-IR, 1H NMR, elemental analysis and/or single crystal X-ray diffraction analysis. Their in vitro anticancer activities were investigated based on five cell lines, including four cancer cell lines (A549, Eca-109, Bel-7402, MCF-7) and one normal cell line (HL-7702). The results show that these complexes possess a strong killing effect on the cancer cells but a weak proliferative inhibition on the normal cells, implying their high inhibitory selectivity for the proliferation of the cancer cell lines. Flow cytometry characterization reveals that these complexes affect cell proliferation mainly in the G0/G1 phase and induce the late apoptotic of the cells. The quantity of palladium(II) ion in extracted DNA was determined by ICP-MS, which proved that these complexes target genomic DNA. And the strong affinity of the complexes with CT-DNA were confirmed by UV-Vis spectrum and circular dichroism (CD). The possible binding modes of the complexes with DNA were further explored by molecular docking. As the concentration of complexes 1-10 gradually increases, the fluorescence intensity of bovine serum albumin (BSA) decreases by a static quenching mechanism.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: spectral investigation, biological applications, and semiconducting properties. Sci Rep 2022; 12:17942. [PMID: 36289280 PMCID: PMC9606359 DOI: 10.1038/s41598-022-22713-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
New Schiff base ligand, derived from antiviral valacyclovir, and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes have been synthesized. By using a variety of analytical and spectroscopic techniques, the type of bonding between the ligand and the metal ions in the recently formed complexes was clarified. The Schiff base ligand act as a bidentate and coordinated with the metal ions through the azomethine-N and the phenolic-O centers, in a mono-deprotonated form. Except for the Zn(II) complex, which displayed a tetrahedral geometry, all complexes displayed octahedral geometry. The TGA findings supported that the stability and decomposition properties of the metal complexes were entirely distinct from one another. The thermogram showed decomposition of all investigated metal complexes above 200 °C in three, four or five steps, and indicated the high thermal stability of these complexes. According to XRD patterns, the particles of these complexes were located at the nanoscale. Moreover, for all the samples analyzed, the TEM images showed uniform and homogeneous surface morphology. The biological activity revealing the high efficiencies of the screened complexes as antibacterial and antitumor agents. The antimicrobial activity of the ligand and its complexes was examined against a variety of pathogenic bacteria and fungi including Escherichia coli, Staphylococcus aureus and Candida albicans. The data obtained revealed that the metal ion in the complexes enhanced the antimicrobial activity compared to the free ligand. The high efficiencies toward S. aureus, E. coli, and C. albicans appeared by Cu(II) complex 23, Ni(II) complex 20, and Ni(II) complex 19, respectively. The antitumor activity of the ligand and its complexes was tested against Hepatocellular carcinoma cell line (HepG-2 cells), the residue 28 which produced after heating the Cu(II) complex 25 at 200 °C for 1 h, exhibited strong inhibition of HepG-2 cell growth. The results of the DNA cleavage investigation demonstrated the ability of investigated Cu(II) complex to degrade DNA. The docking findings showed strong interactions of both the ligand and its examined Cu(II) complex, revealing their ability to cleavage DNA and their potent inhibitory effects on tumor cells. The electrical conductivity study confirmed that the ligand and its investigated complexes had semiconducting properties.
Collapse
|
5
|
|
6
|
Nedeljković NV, Nikolić MV, Mijajlović MŽ, Radić GP, Stanković AS. Interaction of bioessential metal ions with quinolone antibiotics: Structural features and biological evaluation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
A mononuclear PdII complex with Naphcon; crystal structure, experimental and computational studies of the interaction with DNA/BSA and evaluation of anticancer activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review). Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Unraveling the binding mechanism of an Oxovanadium(IV) - Curcumin complex on albumin, DNA and DNA gyrase by in vitro and in silico studies and evaluation of its hemocompatibility. J Inorg Biochem 2021; 221:111402. [PMID: 33975249 DOI: 10.1016/j.jinorgbio.2021.111402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 μΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.
Collapse
|
10
|
Maldonado N, Amo-Ochoa P. The role of coordination compounds in virus research. Different approaches and trends. Dalton Trans 2021; 50:2310-2323. [PMID: 33496298 DOI: 10.1039/d0dt04066e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article aims to provide an overview of the studies focused on using coordination compounds as antiviral agents against different types of viruses. We present various strategies so far used to this end. This article is divided into two sections. The first collects the series of designed antiviral drugs based on coordination compounds. This approach has been developed for many years, starting from the 70s with the discovery of cis-platin (cis-DDP). It has been mainly focused on studying the synergistic effect of a wide variety of new compounds obtained by combining metal ions with organic antiviral ligands. Then, we collect various strategies analyzing the coordination compounds interacting with viruses using different processes such as wrapping viruses, rapid detection of RNA or DNA virus, or nanocarriers. These recent and novel insights help to study viruses from other points of view, allowing to measure their physical and chemical properties. We also highlight a section in which the issue of viruses from a disinfection viewpoint is addressed, using coordination compounds as a tool able to control the release of antiviral and biocide agents. This is an emerging and promising field but this approach is actually little developed. We finally provide a section with a general conclusion and perspectives.
Collapse
Affiliation(s)
- Noelia Maldonado
- Department of Inorganic Chemistry, Autonomous University of Madrid, E-28049 Madrid, Spain.
| | - Pilar Amo-Ochoa
- Department of Inorganic Chemistry, Autonomous University of Madrid, E-28049 Madrid, Spain. and Institute for Advanced Research in Chemistry (IADCHEM). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Grau J, Caubet A, Roubeau O, Montpeyó D, Lorenzo J, Gamez P. Time‐Dependent Cytotoxic Properties of Terpyridine‐Based Copper Complexes. Chembiochem 2020; 21:2348-2355. [DOI: 10.1002/cbic.202000154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Jordi Grau
- nanoBIC, Department of Inorganic and Organic Chemistry Inorganic Chemistry SectionUniversity of Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| | - Amparo Caubet
- nanoBIC, Department of Inorganic and Organic Chemistry Inorganic Chemistry SectionUniversity of Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de AragónCSIC and Universidad de Zaragoza Plaza San Francisco s/n 50009 Zaragoza Spain
| | - David Montpeyó
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia MolecularUniversitat Autònoma de Barcelona, Bellaterra Barcelona Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia MolecularUniversitat Autònoma de Barcelona, Bellaterra Barcelona Spain
| | - Patrick Gamez
- nanoBIC, Department of Inorganic and Organic Chemistry Inorganic Chemistry SectionUniversity of Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona 08028 Barcelona Spain
| |
Collapse
|
12
|
Li J, Liu R, Jiang J, Liang X, Huang L, Huang G, Chen H, Pan L, Ma Z. Zinc(II) Terpyridine Complexes: Substituent Effect on Photoluminescence, Antiproliferative Activity, and DNA Interaction. Molecules 2019; 24:molecules24244519. [PMID: 31835555 PMCID: PMC6943603 DOI: 10.3390/molecules24244519] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
A series of ZnCl2 complexes (compounds 1–10) with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine that bears hydrogen (L1), p-methyl (L2), p-methoxy (L3), p-phenyl (L4), p-tolyl (L5), p-hydroxyl (L6), m-hydroxyl (L7), o-hydroxyl (L8), p-carboxyl (L9), or p-methylsulfonyl (L10) were prepared and then characterized by 1H NMR, electrospray mass-spectra (ESI-MS), IR, elemental analysis, and single crystal X-ray diffraction. In vitro cytotoxicity assay was used to monitor the antiproliferative activities against tumor cells. Absorption spectroscopy, fluorescence titration, circular dichroism spectroscopy, and molecular modeling studied the DNA interactions. All of the compounds display interesting photoluminescent properties and different maximal emission peaks due to the difference of the substituent groups. The cell viability studies indicate that the compounds have excellent antiproliferative activity against four human carcinoma cell lines, A549, Bel-7402, MCF-7, and Eca-109, with the lowest IC50 values of 0.33 (10), 0.66 (6), 0.37 (7), and 1.05 (7) μM, respectively. The spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalator and induce DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π…π stacking and hydrogen bonds, providing an order of nucleotide sequence binding selectivity as ATGC > ATAT > GCGC. These compounds intercalate into the base pairs of the DNA of the tumor cells to affect their replication and transcription, and the process is supposed to play an important role in the anticancer mechanism.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Ling Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Gang Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
- Correspondence: (H.C.); (L.P.); (Z.M.)
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
- Correspondence: (H.C.); (L.P.); (Z.M.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (H.C.); (L.P.); (Z.M.)
| |
Collapse
|
13
|
Bravo C, Galego F, André V. Hydrogen bonding networks of nalidixic acid–copper(ii) complexes. CrystEngComm 2019. [DOI: 10.1039/c9ce01057b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of hydrogen bonding networks of nalidixic acid–Cu(ii) complexes is discussed and may be a possible pathway leading to improved properties and increased efficiency of this antibiotic.
Collapse
Affiliation(s)
- Catarina Bravo
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Filipa Galego
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Vânia André
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
14
|
Castro-Ramírez R, Ortiz-Pastrana N, Caballero AB, Zimmerman MT, Stadelman BS, Gaertner AAE, Brumaghim JL, Korrodi-Gregório L, Pérez-Tomás R, Gamez P, Barba-Behrens N. DNA interactions of non-chelating tinidazole-based coordination compounds and their structural, redox and cytotoxic properties. Dalton Trans 2018; 47:7551-7560. [DOI: 10.1039/c8dt00716k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DNA interactions of novel tinidazole CuII complexes.
Collapse
Affiliation(s)
- Rodrigo Castro-Ramírez
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- Ciudad de México
| | | | - Ana B. Caballero
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institute of Nanoscience and Nanotechnology (IN2UB)
| | | | | | | | | | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics
- Faculty of Medicine
- University of Barcelona
- 08907 L'Hospitalet de Llobregat
- Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics
- Faculty of Medicine
- University of Barcelona
- 08907 L'Hospitalet de Llobregat
- Spain
| | - Patrick Gamez
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- Ciudad de México
| |
Collapse
|
15
|
Grau J, Brissos RF, Salinas-Uber J, Caballero AB, Caubet A, Roubeau O, Korrodi-Gregório L, Pérez-Tomás R, Gamez P. The effect of potential supramolecular-bond promoters on the DNA-interacting abilities of copper–terpyridine compounds. Dalton Trans 2015; 44:16061-72. [DOI: 10.1039/c5dt02211h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supramolecular interactions prevail over DNA-cleaving abilities in the cytotoxicity behaviour of terpyridine-based copper(ii) complexes.
Collapse
Affiliation(s)
- Jordi Grau
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Rosa F. Brissos
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Jorge Salinas-Uber
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ana B. Caballero
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Amparo Caubet
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics
- Cancer Cell Biology Research Group
- Universitat de Barcelona
- 08907 L'Hospitalet de Llobregat
- Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics
- Cancer Cell Biology Research Group
- Universitat de Barcelona
- 08907 L'Hospitalet de Llobregat
- Spain
| | - Patrick Gamez
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| |
Collapse
|
16
|
Brissos RF, Torrents E, Mariana dos Santos Mello F, Carvalho Pires W, de Paula Silveira-Lacerda E, Caballero AB, Caubet A, Massera C, Roubeau O, Teat SJ, Gamez P. Highly cytotoxic DNA-interacting copper(ii) coordination compounds. Metallomics 2014; 6:1853-68. [DOI: 10.1039/c4mt00152d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper complexes from Schiff-base ligands show high cytotoxicity against diverse cancer cell lines, with IC50 values down to 0.23 μM.
Collapse
Affiliation(s)
- Rosa F. Brissos
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Ester Torrents
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | | | - Wanessa Carvalho Pires
- Laboratório de Genética Molecular e Citogenética
- Instituto de Ciências Biológicas
- Universidade Federal de Goiás
- UFG
- Goiânia, Brazil
| | | | - Ana B. Caballero
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Amparo Caubet
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Chiara Massera
- Dipartimento di Chimica
- Università degli Studi di Parma
- 43124 Parma, Italy
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- 50009 Zaragoza, Spain
| | - Simon J. Teat
- Advanced Light Source (ALS)
- Lawrence Berkeley National Laboratory
- Berkeley, USA
| | - Patrick Gamez
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
- 08010 Barcelona, Spain
| |
Collapse
|