1
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Ma X, Zhao D, Liu S, Zuo J, Wang W, Wang F, Li Y, Ding Z, Wang J, Wang X. FERMT2 upregulation in CAFs enhances EMT of OSCC and M2 macrophage polarization. Oral Dis 2024; 30:991-1003. [PMID: 37357349 DOI: 10.1111/odi.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES FERMT2 upregulation was associated with malignant tumor behaviors, including epithelial-to-mesenchymal (EMT). This study aimed to characterize the expression profile of FERMT2 in oral squamous cell carcinoma (OSCC) and to explore its involvement in the tumor microenvironment sculptured by oral cancer-associated fibroblasts (OCAFs). MATERIALS Previous bulk-seq (TCGA-HNSC) and single-cell RNA-seq data sets were retrieved for bioinformatic analysis. Human OSCC lines SCC15 and CAL27, primary normal oral fibroblasts (NOFs), OCAFs, and THP-1 cells were used for intro studies. RESULTS FERMT2 expression was significantly higher in CAFs compared with OSCC tumor cells and normal fibroblasts. Higher FERMT2 expression might independently predict unfavorable disease-specific survival (DSS) in patients with OSCC. Knockdown of FERMT2 suppressed the expression and secretion of IGFBP7, SPARC, TIMP3, COL4A1, and IGFBP4 in OCAFs. OCAFs with FERMT2 knockdown had significantly weakened capability to induce the invasion of OSCC cells and the expression of mesenchymal markers. FERMT2 knockdown impaired the inducing effect of OCAFs on the migration of M0 macrophages and the expression of M2 macrophage markers. CONCLUSIONS FERMT2 could modulate the production and secretion of IGFBP7, SPARC, COL4A1, and IGFBP4 in OCAFs, thereby inducing the EMT of OSCC and M2 macrophage polarization.
Collapse
Affiliation(s)
- Xiangrui Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shan Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yourui Li
- Department of Prosthodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang H, Zhou Y, Wang L, Lv M, Sun J, Luo Z, He J. Sema3A Alleviates the Malignant Behaviors of Gastric Cancer Cells by Inhibiting NRP-1. Curr Mol Med 2024; 24:931-939. [PMID: 37533240 DOI: 10.2174/1566524023666230801124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
AIMS AND OBJECTIVES Semaphorin3A (Sema3a) is lowly expressed in the peripheral blood of gastric cancer patients, suggesting Sema3a may be involved in the progression of gastric cancer. Nevertheless, the specific role and the potential regulatory mechanism of Sema3a in gastric cancer is still obscure. Neuropilin-1 (NRP-1) has been reported to interact with Sema3a; herein, we intended to reveal the role and regulatory mechanism of Sema3a/neuropilin-1 (NRP-1) in gastric cancer progression. METHODS Cell transfection was carried out to regulate gene expression. CCK-8 and colony formation assays were applied to estimate cell proliferation. Scratch assay and transwell assay were conducted to assess the cell migration and invasion abilities. Angiogenesis ability was assessed using a tubule-forming assay. The expression of corresponding genes and proteins were detected by RT-qPCR and western blot, respectively. RESULTS Data showed that Sema3a was downregulated in gastric cancer cells and NRP-1 was upregulated. Sema3a overexpression repressed NRP-1 level in AGS cells. Overexpression of Sema3a inhibited cell proliferation, migration, and invasion abilities as well as epithelial-mesenchymal transition (EMT) of AGS cells. Overexpression of Sema3a inhibited tube formation and reduced the expression of VEGFA/VEGFR2 in AGS cells. However, the effects of Sema3a overexpression on the malignant behaviors in AGS cells were partly reversed by NRP-1 overexpression. Additionally, Sema3a overexpression enhanced the inhibitory effects of Ramucirumab, an anti-VEGFR2 agent, on the proliferative, migratory, and invasive capabilities as well as EMT in AGS cells. CONCLUSION In conclusion, Sema3a alleviates the proliferation, migration, invasion, and angiogenesis capabilities of gastric cancer cells via repressing NRP-1. This finding may provide potential targets for gastric cancer therapy.
Collapse
Affiliation(s)
- Hongqiong Yang
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Yaojun Zhou
- Department of Surgical Urology, the Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Liangzhi Wang
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Mengjia Lv
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Jinling Sun
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Zhenguo Luo
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Junbo He
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| |
Collapse
|
4
|
Bu X, Zhang J, Sun H, Wang W, Ma X, Sun L. SEC61 translocon subunit gamma enhances low-dose cisplatin-induced cancer-stem cell properties of head and neck squamous cell carcinoma via enhancing Ca 2+-mediated autophagy. J Dent Sci 2023; 18:1685-1692. [PMID: 37799908 PMCID: PMC10547946 DOI: 10.1016/j.jds.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Background/purpose High SEC61 translocon subunit gamma (SEC61G) expression is associated with an unfavorable prognosis in patients with head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain poorly understood. Materials and methods HNSCC representative cell lines SCC15 and CAL27 were used to explore the regulation of SEC61G on Ca2+ leak from the endoplasmic reticulum (ER). Ca2+-activated autophagy was monitored by fluorescent labeling of autophagosomes and western blotting assays. CSC marker expression, sphere formation, colony formation, and transwell of invasion were detected to investigate the role of SEC61G in regulating cancer-stem cell (CSC) properties. Results Among the SEC61 complex genes, only SEC61G upregulation is consistently associated with unfavorable progression-free interval and disease-specific survival in patients with HNSCC. Low-dose cisplatin (CDDP) treatment induced SEC61G upregulation in SCC15 and CAL27 cells. SEC61G knockdown significantly impaired CDDP-induced Ca2+ from the ER and the phosphorylation of ERK1/2 and AMPK. CDDP-induced autophagy in HNSCC cells were hampered by SEC61G shRNA, in terms of impaired autophagosome formation, lowered LC3-II/GAPDH ratio and restored p62 expression. CDDP-induced CSC properties, including CSC marker expression, sphere formation, colony formation, and invasive capabilities could be suppressed by shSEC61G and chloroquine, a specific autophagy inhibitor. Conclusion Findings of this study revealed the contribution of SEC61G in promoting cisplatin-induced CSC properties of HNSCC cells via promoting Ca2+-mediated autophagy.
Collapse
Affiliation(s)
- Xiangbin Bu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jun Zhang
- Department of Interventional Catheter Room, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hengyan Sun
- Department of Stomatology, Yantai Penglai Traditional Chinese Medicine Hospital, Shandong, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Legang Sun
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
5
|
Park YM, Lim J, Koh YW, Kim S, Choi EC. Long-term outcomes of early stage oral tongue cancer: Main cause of treatment failure and second primary malignancy. Laryngoscope Investig Otolaryngol 2022; 7:1830-1836. [PMID: 36544917 PMCID: PMC9764773 DOI: 10.1002/lio2.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objective We attempted to investigate the long-term outcomes, prognostic factors, treatment failures, second primary malignancies, and salvage therapies in early (pT1-2N0) oral tongue squamous cell carcinoma (OTSCC). Methods We retrospectively analyzed the medical records of 295 early stage OTSCC patients. Results Two hundred ninety-five patients were enrolled. The average follow-up period was 64.5 months (range, 1-190 months). Five-year recurrence-free survival rate was 84.8% and disease-specific survival rate was 91.2%. On multivariate analysis, only the depth of invasion (DOI) exhibited significant correlations with the disease recurrence. Patient's age and DOI demonstrated a significant association with survival. A total of 53 recurrence and 35 death events occurred, with the main cause of treatment failure being regional or local recurrence. In recurrent cases, the success rate of salvage treatment was 42% at 5 years. During the follow-up period, second primary malignancy occurred in 13 patients, and 8 (61.5%) of those patients were successfully treated. Conclusions In pT1-2N0 OTSCC, regional or local recurrence is the main recurrence pattern, whereas age and DOI >5 mm are significant prognostic factors related to recurrence and survival. Since several patients experienced second primary malignancies in the head and neck, careful and thorough surveillance may be required to detect second primary lesions. Level of Evidence 4.
Collapse
Affiliation(s)
- Young M. Park
- Department of OtorhinolaryngologyYonsei University College of Medicine, Gangnam Severance HospitalSeoulSouth Korea
| | - Jae‐Yol Lim
- Department of OtorhinolaryngologyYonsei University College of Medicine, Gangnam Severance HospitalSeoulSouth Korea
| | - Yoon W. Koh
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| | - Se‐Heon Kim
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| | - Eun C. Choi
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
6
|
Abstract
OBJECTIVE The objective of this study was to evaluate the clinical outcomes in a cohort of patients with early-stage oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS We conducted a retrospective analysis of patients with pT1-T2N0 (American Joint Committee on Cancer [AJCC] seventh edition) OTSCC treated from 2000 to 2018. Two-year actuarial rates of local regional control, cancer-specific survival, and overall survival were calculated for the entire cohort and patients with/without adjuvant radiation. RESULTS Ninety-six patients met the criteria with a median follow-up of 4 years; 14 had adjuvant radiation, while 82 had surgery alone. Two-year local regional control was 82.7% (75.4% to 90.8%) for the entire cohort, 84.9% (77.8% to 93.2%) for surgery only, and 70.7% (50.2% to 99.6%) for patients with adjuvant radiation. Two-year progression-free survival was 82.7% (75.3% to 90.8%). Of the 20 patients with recurrence, 11 (55%) were successfully salvaged. CONCLUSION Local regional recurrence remains modest in early-stage OTSCC, but salvage is possible with high survival rates. LEVEL OF EVIDENCE Level III-retrospective cohort study.
Collapse
|
7
|
Gao F, Li C, Zhao X, Xie J, Fang G, Li Y. CKS2 modulates cell-cycle progression of tongue squamous cell carcinoma cells partly via modulating the cellular distribution of DUTPase. J Oral Pathol Med 2020; 50:175-182. [PMID: 33107644 DOI: 10.1111/jop.13116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND CKS2 (CDC28 Protein Kinase Regulatory Subunit 2) is a gene that encodes CKS2 protein that has been characterized as a binding partner of the catalytic subunit of the cyclin-dependent kinases. However, its expression profile and regulatory effects in tongue squamous cell carcinoma has not yet been explored. METHODS Bioinformatic analysis was conducted using bulk-seq data from The Cancer Genome Atlas and single-cell RNA-seq data from GSE103322. SCC9 and CAL27 cells were used as in vitro cell models for cellular and molecular studies. RESULTS CKS2 expression was significantly upregulated in tongue squamous cell carcinoma tissues (N = 128) compared with adjacent normal tissues (N = 13). Its upregulation was associated with significantly shorter disease-specific survival and progression-free survival. Cellular status estimation in tumor cells indicated that CKS2 expression was moderately and positively correlated with cell-cycle progression. CKS2 inhibition in SCC9 and CAL27 cells resulted in decreased proliferation, weakened colony formation capability, and cell-cycle arrest at the G2/M phase. Immunofluorescence staining and co-Immunoprecipitation (co-IP) assay confirmed co-localization and interaction between CKS2 and DUTPase. CKS2 knockdown did not alter DUTPase expression but reduced its nuclear distribution. Both CKS2 and DUT expression were moderately correlated with their gene-level copy number. CONCLUSION CKS2 expression is associated with unfavorable survival of patients with tongue squamous cell carcinoma. Inhibiting its expression could reduce tongue squamous cell carcinoma cell growth and induce G2/M arrest. CKS2 may interact with DUTPase and regulate its nuclear localization. Gene-level copy amplification might be an important mechanism of upregulated CKS2 and DUT in the tumor.
Collapse
Affiliation(s)
- Fei Gao
- Operation Room, Jinan Stomatological Hospital, Jinan, China
| | - Chong Li
- Department of Outpatient Nursing, Jinan Stomatological Hospital, Jinan, China
| | - Xiqun Zhao
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, China
| | - Jianli Xie
- Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Guiqing Fang
- Clinical laboratory, Jinan Stomatological Hospital, Jinan, China
| | - Ying Li
- Department of Outpatient Nursing, Jinan Stomatological Hospital, Jinan, China
| |
Collapse
|